Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Furmański, Piotr

  • Google
  • 8
  • 31
  • 94

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2020On the anisotropy of thermal conductivity in ceramic bricks34citations
  • 2020Micro-macro heat conduction model for the prediction of local, transient temperature in composite media5citations
  • 2018Investigations on thermal anisotropy of ceramic brickscitations
  • 2015Unconventional experimental technologies used fo phase change materials (PCM) characterization. Part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties38citations
  • 2015Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent media17citations
  • 2015Micro-macro model for prediction of local temperature and concentration distribution in two-phase mediacitations
  • 2014Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase mediacitations
  • 2004Microscopic-macroscopic Modeling of Transport Phenomena During Solidification in Heterogeneous Systemscitations

Places of action

Chart of shared publication
Wiśniewski, Tomasz
2 / 9 shared
Cieślikiewicz, Łukasz
2 / 4 shared
Kubiś, Michał
2 / 13 shared
Pietrak, Karol
2 / 4 shared
Seredyński, Mirosław
5 / 12 shared
Wasik, Michał
2 / 2 shared
Łapka, Piotr
6 / 9 shared
Peñalosa, Conchita
1 / 3 shared
Hadjieva, Mila
1 / 3 shared
Cellat, Kemal
1 / 3 shared
Anghel, Elena Maria
1 / 3 shared
Krupa, Igor
1 / 9 shared
Constantinescu, Mariaella
1 / 4 shared
Jaworski, Maciej
1 / 5 shared
Gschwander, Stefan
1 / 6 shared
Giró-Paloma, Jessica
1 / 3 shared
Martinez, Mònica
1 / 1 shared
Solé, Aran
1 / 4 shared
Fernández, Ana Inés
1 / 2 shared
Boudenne, Abdel
1 / 2 shared
Weber, Robert
1 / 3 shared
Haussman, Thomas
1 / 1 shared
Cabeza, Luisa F.
1 / 12 shared
Bajare, Diana
1 / 17 shared
Boh, Bojana
1 / 3 shared
Lázaro, Ana
1 / 4 shared
Vecstaudza, Jana
1 / 2 shared
Malikova, Marta
1 / 3 shared
Paksoy, Halime O.
1 / 3 shared
Sumiga, Bostjan
1 / 3 shared
Banaszek, Jerzy
3 / 13 shared
Chart of publication period
2020
2018
2015
2014
2004

Co-Authors (by relevance)

  • Wiśniewski, Tomasz
  • Cieślikiewicz, Łukasz
  • Kubiś, Michał
  • Pietrak, Karol
  • Seredyński, Mirosław
  • Wasik, Michał
  • Łapka, Piotr
  • Peñalosa, Conchita
  • Hadjieva, Mila
  • Cellat, Kemal
  • Anghel, Elena Maria
  • Krupa, Igor
  • Constantinescu, Mariaella
  • Jaworski, Maciej
  • Gschwander, Stefan
  • Giró-Paloma, Jessica
  • Martinez, Mònica
  • Solé, Aran
  • Fernández, Ana Inés
  • Boudenne, Abdel
  • Weber, Robert
  • Haussman, Thomas
  • Cabeza, Luisa F.
  • Bajare, Diana
  • Boh, Bojana
  • Lázaro, Ana
  • Vecstaudza, Jana
  • Malikova, Marta
  • Paksoy, Halime O.
  • Sumiga, Bostjan
  • Banaszek, Jerzy
OrganizationsLocationPeople

article

Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent media

  • Furmański, Piotr
  • Banaszek, Jerzy
  • Seredyński, Mirosław
  • Łapka, Piotr
Abstract

The paper presents the potential of an efficient front tracking method on a fixed control-volume grid in micro–macroscopic numerical modeling of both binary alloy solidification and a solid–liquid phase transition of single-component or doped optically functioning materials. In the former case, the method, basing on the assumption that an envelope of columnar dendrite tips moves locally according to a single crystal growth law, allows more precise identification of zones of different dendritic structures developing within the two-phase region, and thus more detailed analysis of some closing models. It is shown, by exploiting the commonly used benchmark problem that a porous medium model of the columnar mush must be carefully chosen since it strongly affects the predicted macro-segregation pattern. In the case of solidification of a single-component or doped semi-transparent material the combination of the front tracking method with the immersed boundary technique provides a new simulation method, which can handle different thermo-physical and optical properties of liquid and solid phases, processes of emission, absorption, reflection and refraction or transmission of thermal radiation at a diffusive or specular distinct solid–liquid interface detected by the front tracking technique. The method has been used in a detailed parametric analysis where the impact of different optical configurations of both phases and their various optical properties as well as variable transmissivity of solid–liquid interface on the phase change process development has been addressed

Topics
  • porous
  • impedance spectroscopy
  • single crystal
  • simulation
  • phase transition
  • liquid phase
  • solidification