People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Furmański, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020On the anisotropy of thermal conductivity in ceramic brickscitations
- 2020Micro-macro heat conduction model for the prediction of local, transient temperature in composite mediacitations
- 2018Investigations on thermal anisotropy of ceramic bricks
- 2015Unconventional experimental technologies used fo phase change materials (PCM) characterization. Part 2 – morphological and structural characterization, physico-chemical stability and mechanical propertiescitations
- 2015Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent mediacitations
- 2015Micro-macro model for prediction of local temperature and concentration distribution in two-phase media
- 2014Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media
- 2004Microscopic-macroscopic Modeling of Transport Phenomena During Solidification in Heterogeneous Systems
Places of action
Organizations | Location | People |
---|
article
Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent media
Abstract
The paper presents the potential of an efficient front tracking method on a fixed control-volume grid in micro–macroscopic numerical modeling of both binary alloy solidification and a solid–liquid phase transition of single-component or doped optically functioning materials. In the former case, the method, basing on the assumption that an envelope of columnar dendrite tips moves locally according to a single crystal growth law, allows more precise identification of zones of different dendritic structures developing within the two-phase region, and thus more detailed analysis of some closing models. It is shown, by exploiting the commonly used benchmark problem that a porous medium model of the columnar mush must be carefully chosen since it strongly affects the predicted macro-segregation pattern. In the case of solidification of a single-component or doped semi-transparent material the combination of the front tracking method with the immersed boundary technique provides a new simulation method, which can handle different thermo-physical and optical properties of liquid and solid phases, processes of emission, absorption, reflection and refraction or transmission of thermal radiation at a diffusive or specular distinct solid–liquid interface detected by the front tracking technique. The method has been used in a detailed parametric analysis where the impact of different optical configurations of both phases and their various optical properties as well as variable transmissivity of solid–liquid interface on the phase change process development has been addressed