Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rees, D. Andrew S.

  • Google
  • 4
  • 4
  • 169

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016The convection of a Bingham fluid in a differentially-heated porous cavity8citations
  • 2015On convective boundary layer flows of a Bingham fluid in a porous medium8citations
  • 2006Composite dielectrics and conductors: Simulation, characterization and design84citations
  • 2005Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation69citations

Places of action

Chart of shared publication
Almond, Darryl P.
1 / 6 shared
Bowen, Christopher R.
1 / 96 shared
Hafiz, M. Z.
1 / 1 shared
Hossain, M. A.
1 / 11 shared
Chart of publication period
2016
2015
2006
2005

Co-Authors (by relevance)

  • Almond, Darryl P.
  • Bowen, Christopher R.
  • Hafiz, M. Z.
  • Hossain, M. A.
OrganizationsLocationPeople

article

On convective boundary layer flows of a Bingham fluid in a porous medium

  • Rees, D. Andrew S.
Abstract

In this short paper we consider the state-of-the-art with regard to convective boundary layer flows of yield-stress fluids in a porous medium. About a dozen papers have been published on the topic in the last 15 years or so and each has presented a leading order boundary layer theory. For natural convection<br/>boundary layers of such fluids, the streamwise velocity field is confined to the boundary layer region but it is also delimited by a yield surface at which there is a precise balance between the yield stress and the buoyancy force. The aim of the present paper is to examine whether such boundary layer flows can exist in practice. We draw on a rigorous boundary layer theory formulated in terms of an asymptotically large Darcy–Rayleigh number, and attempt to determine how the fluid behaves in the region well outside of the boundary layer. We focus on the Cheng–Minkowycz problem, i.e. the free convective boundary layer flow which is induced by a uniformly hot semi-infinite vertical surface embedded in a porous medium.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • theory