Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blishchik, Artem

  • Google
  • 3
  • 11
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Effects of electrically conductive walls on turbulent magnetohydrodynamic flow in a continuous casting mold4citations
  • 2022Laboratory Investigation of Tomography-Controlled Continuous Steel Casting7citations
  • 2021An extensive numerical benchmark of the various magnetohydrodynamic flows12citations

Places of action

Chart of shared publication
Odyck, Daniel Van
1 / 1 shared
Glavinić, Ivan
2 / 2 shared
Kenjeres, Sasa
3 / 6 shared
Wondrak, Thomas
1 / 6 shared
Soleimani, Manuchehr
1 / 13 shared
Muttakin, Imamul
1 / 4 shared
Abouelazayem, Shereen
1 / 1 shared
Eckert, Sven
1 / 7 shared
Stefani, Frank
1 / 4 shared
Saidani, Iheb
1 / 1 shared
Lans, Mike Van Der
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Odyck, Daniel Van
  • Glavinić, Ivan
  • Kenjeres, Sasa
  • Wondrak, Thomas
  • Soleimani, Manuchehr
  • Muttakin, Imamul
  • Abouelazayem, Shereen
  • Eckert, Sven
  • Stefani, Frank
  • Saidani, Iheb
  • Lans, Mike Van Der
OrganizationsLocationPeople

article

An extensive numerical benchmark of the various magnetohydrodynamic flows

  • Lans, Mike Van Der
  • Kenjeres, Sasa
  • Blishchik, Artem
Abstract

<p>There is a continuous need for an updated series of numerical benchmarks dealing with various aspects of the magnetohydrodynamics (MHD) phenomena (i.e. interactions of the flow of an electrically conducting fluid and an externally imposed magnetic field). The focus of the present study is numerical magnetohydrodynamics (MHD) where we have performed an extensive series of simulations for generic configurations, including: (i) a laminar conjugate MHD flow in a duct with varied electrical conductivity of the walls, (ii) a back-step flow, (iii) a multiphase cavity flow, (iv) a rising bubble in liquid metal and (v) a turbulent conjugate MHD flow in a duct with varied electrical conductivity of surrounding walls. All considered benchmark situations are for the one-way coupled MHD approach, where the induced magnetic field is negligible. The governing equations describing the one-way coupled MHD phenomena are numerically implemented in the open-source code OpenFOAM. The novel elements of the numerical algorithm include fully-conservative forms of the discretized Lorentz force in the momentum equation and divergence-free current density, the conjugate MHD (coupling of the wall/fluid domains), the multi-phase MHD, and, finally, the MHD turbulence. The multi-phase phenomena are simulated with the Volume of Fluid (VOF) approach, whereas the MHD turbulence is simulated with the dynamic Large-Eddy Simulation (LES) method. For all considered benchmark cases, a very good agreement is obtained with available analytical solutions and other numerical results in the literature. The presented extensive numerical benchmarks are expected to be potentially useful for developers of the numerical codes used to simulate various types of the complex MHD phenomena.</p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • simulation
  • laser emission spectroscopy
  • current density
  • electrical conductivity