Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pradhan, Vijay

  • Google
  • 1
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Reliable prediction of aqueous dew points in CO2 pipelines and new approaches for control during shut-in8citations

Places of action

Chart of shared publication
Xiao, Xiong
1 / 2 shared
Boxall, John A.
1 / 1 shared
Rowland, Darren
1 / 1 shared
May, Eric F.
1 / 2 shared
Jiao, Fuyu
1 / 1 shared
Ghafri, Saif Z. S. Al
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Xiao, Xiong
  • Boxall, John A.
  • Rowland, Darren
  • May, Eric F.
  • Jiao, Fuyu
  • Ghafri, Saif Z. S. Al
OrganizationsLocationPeople

article

Reliable prediction of aqueous dew points in CO2 pipelines and new approaches for control during shut-in

  • Xiao, Xiong
  • Pradhan, Vijay
  • Boxall, John A.
  • Rowland, Darren
  • May, Eric F.
  • Jiao, Fuyu
  • Ghafri, Saif Z. S. Al
Abstract

<p>Accurate predictions and precise control of the allowable water content in CO<sub>2</sub>-rich fluids are required in large-scale pipeline operations. Especially during transient shut-in and re-start operations, the pressure decrease associated with cooling may cause the CO<sub>2</sub>-rich mixture to pass through its dew point, producing an aqueous liquid phase. The pH of this liquid aqueous phase will rapidly decrease as carbonic acid is formed, greatly accelerating the corrosion rate of the carbon steel pipeline. The phase behaviour of CO<sub>2</sub>-rich fluid mixtures is qualitatively different to that of hydrocarbons, and standard oil and gas property packages in process simulation software may be inadequate for predicting dew points and other key properties. An extensive literature survey reveals 34 data sets where water contents of CO<sub>2</sub>-rich fluids have been measured near conditions relevant to CO<sub>2</sub> pipelines. Following consistency tests, 23 data sets were found to be of good quality and 11 data sets were found to be of poor quality. The good-quality data were compared with predictions from 6 equations of state. Overall, Multiflash's RKS (Advanced) model was found to provide the best agreement with the aqueous dew point data of CO<sub>2</sub>-rich fluid phases. A case study is presented wherein it is demonstrated that the formation of a corrosive aqueous phase can be avoided during shut-in via introduction of a relatively small volume of ethanol.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • corrosion
  • simulation
  • steel
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • liquid phase