People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luquot, Linda
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016Efficiency of magnesium hydroxide as engineering seal in the geological sequestration of CO 2citations
- 2016Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brinecitations
- 2014Rheological Characterization of Olivine Slurries, Sheared Under CO2 Pressurecitations
- 2014Rheological characterization of olivine slurries, sheared under CO 2 pressurecitations
- 2013Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brinecitations
- 2012CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia)citations
Places of action
Organizations | Location | People |
---|
article
Efficiency of magnesium hydroxide as engineering seal in the geological sequestration of CO 2
Abstract
Injection of CO2 at depth will cause the acidification of groundwater. As a preliminary study for the potential use of MgO as an alternative to Portland cement in injection wells, MgO carbonation has been studied by means of stirred batch experiments under subcritic (pCO2 of 10 and 50 bar and T of 25, 70 and 90 °C) and supercritic (pCO2 of 74 bar and T of 70 and 90 °C) CO2 conditions. Magnesium oxide reacts with CO2-containing and Ca-rich water nearly equilibrated with respect to calcite. MgO quickly hydrates to brucite (Mg(OH)2) which dissolves causing the precipitation of magnesium carbonate phases. Precipitation of these secondary phases (magnesite and/or metastable phases such as nesquehonite (MgCO3·3H2O) or hydromagnesite (Mg5(CO3)4(OH)2·4(H2O)) depends on pCO2, temperature and solid/water content. In a constant solid/water ratio, the precipitation of the non-hydrated Mg carbonate is favored by increasing temperature and pCO2. The experimental variation of Mg and Ca concentrations and pH over time at the different temperatures and pCO2 has been simulated using the CrunchFlow reactive transport code. Simulations reproduce the experimental evolution of the aqueous concentrations and indicate a decrease in porosity when increasing temperature and pCO2. This decrease in porosity would be beneficial for the sealing properties of the cement. These results have been used in the simulation of an application case with a deep borehole surrounded by MgO cement at 90 °C.