People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breitbarth, Eric
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024An iterative crack tip correction algorithm discovered by physical deep symbolic regressioncitations
- 2024Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profilescitations
- 2024Next generation fatigue crack growth experiments of aerospace materialscitations
- 2023Werkstoffmechanische Prüfung der nächsten Generation: Rissfortschritt komplexer Rumpfstrukturen
- 2023Strategies to accelerate the design, discovery, development and deployment of materials in the era of the digital transformation
- 2023Fatigue crack growth in anisotropic aluminium sheets–phase-field modelling and experimental validationcitations
- 2022Towards three dimensional aspects of plasticity-induced crack closure: A finite element simulationcitations
- 2022Damage Mechanisms and Anisotropy of an AA7010-T7452 Open-Die Forged Alloy: Fatigue Crack Propagationcitations
- 2020High-stress fatigue crack propagation in thin AA2024-T3 sheet materialcitations
- 2019Anisotropes Rissausbreitungsverhalten einer freiformgeschmiedeten, hochfesten AA7010-T7652 Legierung
Places of action
Organizations | Location | People |
---|
article
An iterative crack tip correction algorithm discovered by physical deep symbolic regression
Abstract
Digital image correlation is a widely used technique in the field of experimental mechanics. In fracture mechanics, determining the precise location of the crack tip is crucial. In this paper, we introduce a novel crack tip detection algorithm based on displacement and strain fields obtained by digital image correlation. Iterative crack tip correction formulas are discovered by applying deep symbolic regression guided by physical unit constraints to a dataset of simulated cracks under mode I, II and mixed-mode conditions with variable T-stress. For the training dataset, we fit the Williams series expansion with super-singular terms to the simulated displacement fields at randomly chosen origins around the actual crack tip. We analyse the discovered formulas and apply the most promising one to digital image correlation data obtained from uniaxial and biaxial fatigue crack growth experiments of AA2024-T3 sheet material. Throughout the experiments, the crack tip positions are reliably detected leading to improved stability of the crack propagation curves.