People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bartali, Ahmed El
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Characterisation of 3D strain heterogeneity at the microstructure scale during Low Cycle Fatigue of an AlSi7Cu3Mg alloy at 250°Ccitations
- 2021Coupling of X‐ray computed tomography and surface in situ analysis combined with digital image correlation method to study low cycle fatigue damage micromechanisms in lost foam casting A319 alloycitations
- 2020Damage mechanisms in an aluminium-silicon alloy with a controlled defect
- 2015Study of damage mechanisms in A319 aluminium alloy by X-ray tomography and Digital Volume Correlation
- 2014Influence of the Lost Foam Casting Microstructure on Low Cycle Fatigue Damage of A319 Aluminum Alloy
- 2014Influence of the Casting Microstructure upon the Tensile Behaviour in A319 Al‐Si Alloy Investigated by X‐Ray Tomography and Digital Volume Correlationcitations
- 2013Microstructural strain heterogeneities during low cycle fatigue
Places of action
Organizations | Location | People |
---|
article
Characterisation of 3D strain heterogeneity at the microstructure scale during Low Cycle Fatigue of an AlSi7Cu3Mg alloy at 250°C
Abstract
3D tomographic images of a cast AlSi7Cu3Mg alloy were obtained using synchrotron X-ray tomography during in-situ Low Cycle Fatigue tests at 250°C. While image analysis highlights the role of eutectic Si particles close to pores in damage mechanisms, high resolution digital volume correlation reveals the relationship between strain heterogeneity at the microstructural scale and hard particles failure or cracks. Monitoring strains evolution with cycles within hard particles, i.e. eutectic Si and Fe or Cu intermetallics, allows measuring their local failure strains and drawing a hierarchy of the deformation to failure. Then, a local Manson-Coffin curve per hard phase is proposed.