People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fladischer, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Effect of Surface Finishing State on Fatigue Strength of Cast Aluminium and Steel Alloyscitations
- 2023Study of Local Fatigue Methods (TCD, N-SIF, and ESED) on Notches and Defects Related to Numerical Efficiencycitations
- 2022Fatigue strength study based on geometric shape of bulk defects in cast steelcitations
- 2022A Probabilistic Fatigue Strength Assessment in AlSi-Cast Material by a Layer-Based Approachcitations
Places of action
Organizations | Location | People |
---|
article
Fatigue strength study based on geometric shape of bulk defects in cast steel
Abstract
This work applies Taylor’s Theory of Critical Distances (TCD) to assess the fatigue strength of defect-afflicted cast steel components made of G21Mn5+N. Based on radiographs of complexly shaped spatial imperfections, the established TCD-framework leads to a sound agreement of numerical and experimental fatigue strength. Moreover, a novel fatigue assessment methodology is presented, which bases on the projected planar defect shape, featuring an engineering-feasible design method without the need of extensive numerical simulations. About one-hundred additional imperfections referring to ASTM E446 class A and C validate the model, showing an average deviation of about five percent in fatigue strength.