People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khan, R. H. U.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Residual Stresses in Alloy IN718 Produced Through Modulated Laser Powder Bed Fusioncitations
- 2022Effect of heat treatment on fatigue crack growth in IN718/316L multiple-materials layered structures fabricated by laser powder bed fusioncitations
- 2022Effect of heat treatment on fatigue crack growth in IN718/316L multiple-materials layered structures fabricated by laser powder bed fusioncitations
- 2020Hot Isostatic Pressing of IN625
- 2019Influence of powder characteristics on the microstructure and mechanical properties of HIPped CM247LC Ni superalloycitations
Places of action
Organizations | Location | People |
---|
article
Effect of heat treatment on fatigue crack growth in IN718/316L multiple-materials layered structures fabricated by laser powder bed fusion
Abstract
<p>Multi-material specimens of 316L stainless steel and IN718 were produced in a layered architecture by the Laser Powder Bed Fusion (L-PBF) process. Specimens were heat treated at temperatures tailored for the combination of 316L and IN718. The effect of the heat treatment on the microstructure and on the tensile properties across the layers was investigated. Two heat-treated bi-layer specimens (No.1 and No.2) and one heat-treated 4-layer specimen (No.3) were tested under 3 point bending fatigue to compare the crack propagation resistance through multiple sets of dissimilar material interfaces. It was found that the crack propagation resistance overall is mainly controlled by the local microstructural strength, while the interface transition is most significant at lower values of stress intensity factor range (ΔK < 20 MPa√m).</p>