Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Natkowski, Erik

  • Google
  • 4
  • 10
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models15citations
  • 2022Industrializable microstructure-sensitive fatigue simulationcitations
  • 2021Micromechanical analysis of failure in fiber reinforced polymer‐metal structures1citations
  • 2021Modeling and simulation of interface failure in metal-composite hybrids18citations

Places of action

Chart of shared publication
Münstermann, Sebastian
1 / 21 shared
Durmaz, Ali Riza
1 / 12 shared
Arnaudov, Nikolai
1 / 1 shared
Gumbsch, Peter
1 / 31 shared
Eberl, Christoph
1 / 6 shared
Sonnweber-Ribic, Petra
1 / 7 shared
Weihe, Stefan
1 / 16 shared
Hirsch, Franz
1 / 2 shared
Kästner, Markus
2 / 46 shared
Hirsch, Franz Wolfgang
1 / 8 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Münstermann, Sebastian
  • Durmaz, Ali Riza
  • Arnaudov, Nikolai
  • Gumbsch, Peter
  • Eberl, Christoph
  • Sonnweber-Ribic, Petra
  • Weihe, Stefan
  • Hirsch, Franz
  • Kästner, Markus
  • Hirsch, Franz Wolfgang
OrganizationsLocationPeople

article

Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models

  • Natkowski, Erik
  • Münstermann, Sebastian
  • Durmaz, Ali Riza
  • Arnaudov, Nikolai
  • Gumbsch, Peter
  • Eberl, Christoph
  • Sonnweber-Ribic, Petra
  • Weihe, Stefan
Abstract

Crack initiation governs high cycle fatigue life and is sensitive to microstructural details. While corresponding microstructure-sensitive models are available, their validation is difficult. We propose a validation framework where a fatigue test is mimicked in a sub-modeling simulation by embedding the measured microstructure into the specimen geometry and adopting an approximation of the experimental boundary conditions. Exemplary, a phenomenological crystal plasticity model was applied to predict deformation in ferritic steel (EN1.4003). Hotspots in commonly used fatigue indicator parameter maps are compared with damage segmented from micrographs. Along with the data, the framework is published for benchmarking future micromechanical fatigue models. ; 160

Topics
  • impedance spectroscopy
  • microstructure
  • experiment
  • simulation
  • crack
  • steel
  • fatigue
  • plasticity
  • crystal plasticity