People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blason, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Generalization of the Weibull probabilistic compatible model to assess fatigue data into three domains: LCF, HCF and VHCFcitations
- 2016A probabilistic analysis of Miner's law for different loading conditionscitations
- 2016Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closurecitations
Places of action
Organizations | Location | People |
---|
article
Generalization of the Weibull probabilistic compatible model to assess fatigue data into three domains: LCF, HCF and VHCF
Abstract
In this work, three classes of fatigue models are reviewed according to the fatigue regimes commonly considered in the current components design. Particular attention is devoted to the so-called Class III fatigue models, covering the three fatigue regimes, namely, LCF, HCF and VHCF. The applicability and limitations of the proposed analytical sigmoidal solutions are discussed from the viewpoint of practical design. The compatible Weibull S-N model by Castillo and Canteli is revisited and improved by considering a new reference parameter GP = E center dot sigma(M) center dot(d epsilon/d sigma)|(M) as the driving force alternative to the conventional stress range. In this way, the requirement, sigma(M) <= sigma(u), according to the real experimental conditions, is fulfilled and the parametric limit number of cycles, N-0, recovers its meaning. The probabilistic definition of the model on the HCF and VHCF regimes is maintained and extended to the LCF regime. The strain gradients may be calculated from the monotonic or cyclic stress-strain curve of the material although a direct derivation from the hysteresis loop is recommended. Some Class III fatigue models from the literature and another one improved by the authors are applied to the assessment of one experimental campaign under different stress ratios conditions and the results compared accordingly. Finally, the new probabilistic GP-N field is evaluated. The results confirm the practical confluence of the stress- and the strain-based approaches into a single and advantageous unified methodology.