People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lindgaard, Esben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024An accurate forming model for capturing the nonlinear material behaviour of multilayered binder-stabilised fabrics and predicting fibre wrinklingcitations
- 2024That’s how the preform crumples: Wrinkle creation during forming of thick binder-stabilised stacks of non-crimp fabricscitations
- 2024MatrixCraCS: Automated tracking of matrix crack development in GFRP laminates undergoing large tensile strains
- 2024Parametric study on the effect of material properties, tool geometry, and tolerances on preform quality in wind turbine blade manufacturingcitations
- 2023Benchmark test for mode I fatigue-driven delamination in GFRP composite laminatescitations
- 2023Benchmark test for mode I fatigue-driven delamination in GFRP composite laminates: Experimental results and simulation with the inter-laminar damage model implemented in SAMCEFcitations
- 2022Simulation of Wrinkling during Forming of Binder Stabilized UD-NCF Preforms in Wind Turbine Blade Manufacturingcitations
- 2022Delamination toughening of composite laminates using weakening or toughening interlaminar patches to initiate multiple delaminationscitations
- 20213D progressive fatigue delamination model:Deliverable 5.1
- 20213D progressive fatigue delamination model
- 2021A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameterscitations
- 2021Transition-behaviours in fatigue-driven delamination of GFRP laminates following step changes in block amplitude loadingcitations
- 2021UPWARDS Deliverable D5.4:Report and data on the effect of fatigue loading history on damage development
- 2021A continuum damage model for composite laminatescitations
- 2019Formulation of a mixed-mode multilinear cohesive zone law in an interface finite element for modelling delamination with R-curve effectscitations
- 2019Parametric study of the effect of wrinkle features on the strength of a tapered wind turbine blade sub-structurecitations
- 2019An evaluation of mode-decomposed energy release rates for arbitrarily shaped delamination fronts using cohesive elementscitations
- 2019Experimental characterization of delamination in off-axis GFRP laminates during mode I loadingcitations
- 2017A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone modelscitations
- 2016Post-buckling optimization of composite structures using Koiter's methodcitations
- 2015Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies
Places of action
Organizations | Location | People |
---|
article
Transition-behaviours in fatigue-driven delamination of GFRP laminates following step changes in block amplitude loading
Abstract
<p>Fatigue damage accumulation in laminated fiber reinforced polymer composites is highly sensitive to interactions of load events occurring in variable amplitude loading. This work aims to experimentally characterise fatigue-driven delamination growth due to step changes in block amplitude loading. Double cantilever beam glass/epoxy specimens are subjected to two-level block loading and constant amplitude cyclic loading under mode I crack opening. Crack propagation is monitored using a recently developed highly accurate digital image-based method for automated tracking of delamination fronts in translucent materials (Bak and Lindgaard, 2020). The results prove a significant difference in the crack growth rate following from a step change in block amplitude loading in comparison to the crack growth rate under constant amplitude cyclic loading at the same value of the strain energy release rate. Special emphasis is placed on the transition crack growth phenomenon, which is strongly influenced by the cyclic load history. Any of the load amplitude transitions under investigation, cause a characteristic and non-negligible transition-behaviour, which is currently ignored in state-of-the-art prediction models for fatigue-driven delamination growth. Supplementary tests are conducted to discuss the role of bridging fibres in the crack wake during load amplitude transitions.</p>