Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laithy, Mostafa El

  • Google
  • 4
  • 6
  • 73

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatigue16citations
  • 2022White etching bands formation mechanisms due to rolling contact fatigue24citations
  • 2021Semi-empirical model for predicting LAB and HAB formation in bearing steels7citations
  • 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatigue26citations

Places of action

Chart of shared publication
Wang, Ling
4 / 32 shared
Vierneusel, Bernd
4 / 9 shared
Harvey, Terence
4 / 12 shared
Schwedt, Alexander
2 / 15 shared
Mayer, Joachim
1 / 30 shared
Meyer, Joachim
1 / 2 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Wang, Ling
  • Vierneusel, Bernd
  • Harvey, Terence
  • Schwedt, Alexander
  • Mayer, Joachim
  • Meyer, Joachim
OrganizationsLocationPeople

article

Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatigue

  • Wang, Ling
  • Vierneusel, Bernd
  • Laithy, Mostafa El
  • Harvey, Terence
Abstract

Microstructural alterations such as dark etching regions (DERs) and white etching bands (WEBs) have been known to manifest in the subsurface of steel bearings due to rolling contact fatigue (RCF) under medium-high stress cycles. Even though such manifestations have been reported substantially in literature for decades, their formation and their evolution mechanisms are not fully understood. As part of the re-investigation of DERs and WEBs, this paper presents the results from characterization of DER and WEBs, including both low angle bands (LABs) and high angle bands (HABs), formed in SAE 52100 bearings at different stages of bearing life. Angular contact ball bearings (ACBBs), subjected to RCF testing under different contact pressure, stress cycles and steel cleanliness, have been examined to reveal new information related to the microstructural alteration processes, e.g. the 3-D structure of the WEBs and their growth pattern. Contrary to some of the literature results, the experimental results have shown that the mean depths and density of WEBs (LABs and HABs), as opposed to DER, are correlated with the position and distribution of the principle shear stress. The results also show that HABs form as a consequence of LABs especially in densed LAB areas in the ACBBs studied here.

Topics
  • density
  • steel
  • fatigue
  • etching