People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saux, Matthieu Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2021DLI-MOCVD Crx Cy coating to prevent Zr-based cladding from inner oxidation and secondary hydriding upon LOCA conditionscitations
- 2021Combined effects of temperature and of high hydrogen and oxygen contents on the mechanical behavior of a zirconium alloy upon cooling from the βZr phase temperature rangecitations
- 2020High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and processcitations
- 2020Phase transformations during cooling from the βZr phase temperature domain in several hydrogen-enriched zirconium alloys studied by in situ and ex situ neutron diffractioncitations
- 2020Breakaway oxidation of zirconium alloys exposed to steam around 1000 °Ccitations
- 2020A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplasticscitations
- 2020Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditionscitations
- 2019Comportement mécanique d'un revêtement de chrome déposé sur un substrat en alliage de zirconium
- 2019In-situ time-resolved study of structural evolutions in a zirconium alloy during high temperature oxidation and coolingcitations
- 2019Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactorscitations
- 2019A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplastics
- 2018High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubescitations
- 2017Secondary hydriding of zirconium-based fuel claddings at high temperature (LOCA conditions). Part 2: Effect of high hydrogen contents on metallurgical and mechanical properties. Part 1: Multi-scale study of hydrogen distribution
- 2017Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobecitations
- 2016Out-of-pile RandD on chromium coated nuclear fuel zirconium based claddings for enhanced accident tolerance in LWRs
- 2016CEA studies on High temperature oxidation and hydriding of Zr based nuclear fuel claddings upon LOCA transients phenomenology, mechanisms and modelling => consequences on mechanical properties
- 2016Mechanical behavior at high temperature of highly oxygen- or hydrogen-enriched α and (prior-) $beta$ phases of zirconium alloys
- 2016Mechanical behavior at high temperatures of highly oxygen- or hydrogen-enriched α and (Prior-) β phases of zirconium alloyscitations
- 2015In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperaturecitations
- 2010Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C under various stress states, including RIA loading conditionscitations
- 2008A model to describe the anisotropic viscoplastic mechanical behavior of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditions
Abstract
Design of reinforced plastic parts against fatigue failure has become a serious issue these last few years for increasing engineering field applications. This is indeed a complex problem due to the strong anisotropy induced by the orientation of the fibers during the injection process and to the non-linear dissipative behavior of the matrix. This generates strong influences of numerous parameters (fiber orientation, environment, strain rate, load ratio, …), which complicates both the description of the constitutive response and the definition of a robust and efficient fatigue criterion. This paper presents a very wide fatigue database (480 tension-compression tests) obtained on Polyamide 66 reinforced with 50% of glass fibers (PA66 GF50), for an extended range of load ratios (from −0.5 to 0.7), three orientations from the injection direction (0°, 45°, 90°) and two environmental conditions (50% humidity ratio and 80 °C, 80% humidity ratio and 23 °C). Beyond these experimental results, the goal of this paper is to compare the ability of numerous fatigue criteria to provide a robust description of the fatigue database, possibly with a unified set of parameters. Classical models as well as very recent ones are discussed and two variants of a new fatigue criterion are finally defined. This criterion is able to describe very accurately the full database with only four parameters. Finally, a focus is given to determine the minimal amount of experimental data needed to obtain a reliable description of the fatigue results, on the full ranges of load ratios, orientations and environmental conditions.