Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zanganeh, M.

  • Google
  • 2
  • 7
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Study of the biaxial fatigue behaviour and overloads on S355 low carbon steel23citations
  • 2020Study of the biaxial fatigue behaviour and overloads on S355 low carbon steel23citations

Places of action

Chart of shared publication
López-Crespo, Pablo
1 / 13 shared
Sánchez-Cruces, Manuel Alejandro
1 / 5 shared
Mokhtarishirazabad, Mehdi
2 / 14 shared
Moreno-Morales, María Belén
1 / 5 shared
Lopez-Crespo, P.
1 / 7 shared
Cruces, A. S.
1 / 2 shared
Moreno, B.
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • López-Crespo, Pablo
  • Sánchez-Cruces, Manuel Alejandro
  • Mokhtarishirazabad, Mehdi
  • Moreno-Morales, María Belén
  • Lopez-Crespo, P.
  • Cruces, A. S.
  • Moreno, B.
OrganizationsLocationPeople

article

Study of the biaxial fatigue behaviour and overloads on S355 low carbon steel

  • Lopez-Crespo, P.
  • Cruces, A. S.
  • Moreno, B.
  • Mokhtarishirazabad, Mehdi
  • Zanganeh, M.
Abstract

This work aimed to study the fatigue behaviour of S355 low carbon steel under uniaxial and biaxial loading conditions and to measure the overload effects under both types of loads. The analysis is performed with a local strain approach and with damage tolerance approach. Local strain based investigation was based on Fatemi-Socie critical plane model. This allows the life reduction caused by growing the crack from a stress raiser to be quantified. The fatigue life reduction caused by applying simultaneously torsional and tension loads was also evaluated with Fatemi-Socie model. In addition, the crack opening displacement (COD) and the effective stress intensity factor (SIF) were evaluated experimentally via full-field technique of digital image correlation (DIC). Both COD and SIF have been useful to understand the transient effects caused by a 40% overload under the two types of load. In addition, COD measurements allowed the offset compliance method for evaluating the opening load to be applied on a cylindrical specimen subjected to tension load. SIF estimation was also useful to quantify the mode mixity (I + II) developed during the experiment under the two types of load.

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • crack
  • steel
  • fatigue