People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulios, Konstantinos
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Adding friction to Third Medium Contact:A crystal plasticity inspired approachcitations
- 2024Adding friction to Third Medium Contact: A crystal plasticity inspired approachcitations
- 2024Finite Element Predictions of In-Situ 3D X-Ray CT Determined Compression Failure of Uni-Directional Composites
- 2023Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modellingcitations
- 2023Inverse design of mechanical springs with tailored nonlinear elastic response utilizing internal contactcitations
- 2022Uniaxial tensile behaviour of additively manufactured elastically isotropic truss lattices made of 316Lcitations
- 2022Rapid Screening of the Mechanical Properties of 13 wt%Cr Steels with Uncharted Combinations of C and N Contentscitations
- 2022Anisotropic yield surfaces of additively manufactured metals simulated with crystal plasticitycitations
- 2022On the effect of microplasticity on crack initiation from subsurface defects in rolling contact fatiguecitations
- 2021Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructurescitations
- 2021Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructurescitations
- 2021Anisotropic tensile behaviour of additively manufactured Ti-6Al-4V simulated with crystal plasticitycitations
- 2021Finite element study of cyclic plasticity near a subsurface inclusion under rolling contact and macro-residual stressescitations
- 2020Effect of superimposed compressive stresses on rolling contact fatigue initiation at hard and soft inclusionscitations
- 2019Determination of optimal residual stress profiles for improved rolling contact fatigue resistancecitations
- 2018A homogenization method for ductile-brittle composite laminates at large deformationscitations
- 2016Homogenization of long fiber reinforced composites including fiber bending effectscitations
- 2015Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced Composites
- 2014Uncertainty of pin height measurement for the determination of wear in pin-on-plate testcitations
- 2013Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressurecitations
- 2012Coefficient of Friction Measurements for Thermoplastics and Fiber Composites under Low Sliding Velocity and High Pressure
Places of action
Organizations | Location | People |
---|
article
Effect of superimposed compressive stresses on rolling contact fatigue initiation at hard and soft inclusions
Abstract
A semi-analytical framework is introduced for the evaluation of favorable residual stresses for delaying rolling contact fatigue initiation. Subsurface stress histories are applied to a micro-scale model accounting for isolated inclusions of different types and geometries. Micro-scale von Mises stresses are calculated based on Eshelby’s method and considered as an estimator of crack initiation due to plastic deformation. The most critical cases in terms of micro-scale plasticity are identified, and the effect of macro-scale compressive residual stresses is considered. Finally, optimized residual stresses are determined that minimize the maximum attained micro-scale von Mises stress at different depths.