People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knowles, David M.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavitiescitations
- 2024Productive Automation of Calibration Processes for Crystal Plasticity Model Parameters via Reinforcement Learningcitations
- 2024Calibration and surrogate model-based sensitivity analysis of crystal plasticity finite element models
- 2024Towards a Data-Driven Evolutionary Model of the Cyclic Behaviour of Austenitic Steels
- 2024Effect of grain boundary misorientation and carbide precipitation on damage initiationcitations
- 2023Exploring 3D X-Ray Diffraction Method to Validate Approaches in Materials Modelling
- 2022A method to extract slip system dependent information for crystal plasticity modelscitations
- 2022The effects of internal stresses on the creep deformation investigated using in-situ synchrotron diffraction and crystal plasticity modellingcitations
- 2021Comparing Techniques for Quantification of Creep Cavities
- 2021The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steelcitations
- 2021Evaluation of fracture toughness and residual stress in AISI 316L electron beam weldscitations
- 2020Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwellscitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020The role of grain boundary orientation and secondary phases in creep cavity nucleation of a 316h boiler headercitations
- 2019Effect of Plasticity on Creep Deformation in Type 316h Stainless Steel
- 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEMcitations
- 2018Influence of prior cyclic plasticity on creep deformation using crystal plasticity modellingcitations
- 2018Comparison of predicted cyclic creep damage from a multi-material weldment FEA model and the traditional r5 volume 2/3 weldment approach
Places of action
Organizations | Location | People |
---|
article
Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEM
Abstract
A miniature three-point bend fatigue stage for in-situ observation of fatigue microcrack initiation and growth behaviour by scanning electron microscopy (SEM) and contact mode high-speed atomic force microscopy (HS-AFM) has been developed.Details of this stage are provided along with finite element simulations of the stress profiles of said stage and specimen on loading. The proposed stage facilitates study of the micro mechanisms of fatigue damage evolution when used during SEM and HS-AFM scanning of the sample surface. High amplitude low cycle fatigue tests have been carried out on annealed AISI Type 316 stainless steel to demonstrate the applicability of the system. Characteristic features of surface topography and evolution of slip bands observed have been documented. Images obtained by SEM and HS-AFM are presented for comparison. Finally, to demonstrate the capability of the new facility combined with HS-AFM, the spacing between slip bands and their height at different grains at the centre of the metal sample are measured and compared.