Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhasin, Mukesh

  • Google
  • 2
  • 7
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers46citations
  • 2018Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets34citations

Places of action

Chart of shared publication
Ravindran, Anil R.
1 / 8 shared
Kinloch, Anthony J.
2 / 20 shared
Ladani, Raj B.
2 / 17 shared
Mouritz, Adrian P.
2 / 17 shared
Ghorbani, Kamran
1 / 9 shared
Wang, Chun H.
2 / 21 shared
Zhang, Jin
1 / 24 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ravindran, Anil R.
  • Kinloch, Anthony J.
  • Ladani, Raj B.
  • Mouritz, Adrian P.
  • Ghorbani, Kamran
  • Wang, Chun H.
  • Zhang, Jin
OrganizationsLocationPeople

article

Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets

  • Kinloch, Anthony J.
  • Ladani, Raj B.
  • Mouritz, Adrian P.
  • Wang, Chun H.
  • Bhasin, Mukesh
Abstract

<p>The effectiveness of electric field alignment of graphene nanoplatelets (GNPs) in increasing the fatigue resistance of epoxy nanocomposites is investigated. Aligning the GNPs using an electric field yields a greater improvement in the fatigue crack growth resistance of the epoxy than obtained using randomly-orientated GNPs, particularly in the near threshold region. The improvement was due to several toughening mechanisms which retard the fatigue crack growth in the epoxy nanocomposites. These toughening mechanisms become more active when the GNPs are aligned normal to the direction of fatigue crack growth, which results in a higher fatigue resistance for the epoxy nanocomposites containing aligned GNPs than for those containing randomly-orientated GNPs.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • crack
  • fatigue
  • aligned