Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schnubel, Dirk

  • Google
  • 1
  • 4
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Application of modified Kitagawa-Takahashi diagram for fatigue strength assessment of cast Al-Si-Cu alloys40citations

Places of action

Chart of shared publication
Leitner, Martin
1 / 66 shared
Stauder, Bernhard
1 / 4 shared
Garb, Christian
1 / 5 shared
Grün, Florian
1 / 41 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Leitner, Martin
  • Stauder, Bernhard
  • Garb, Christian
  • Grün, Florian
OrganizationsLocationPeople

article

Application of modified Kitagawa-Takahashi diagram for fatigue strength assessment of cast Al-Si-Cu alloys

  • Schnubel, Dirk
  • Leitner, Martin
  • Stauder, Bernhard
  • Garb, Christian
  • Grün, Florian
Abstract

This paper presents comprehensive fatigue test results utilizing small-scale specimens extracted from AlSi8Cu3 and AlSi7Cu0.5Mg aluminium-cast crankcases and cylinder heads. The experimental results act as basis to set-up a defect size-based material model applying the Kitagawa-Takahashi approach and the modification by El-Haddad and Chapetti. The round samples were manufactured from three different component locations to achieve a variation in microstructure and micropore sizes. Fractographical analyses were executed to examine the size and shape of the crack-initiating micropores. Mostly shrinkage pores were detected within the investigated alloy specifications, except the Na-modified alloy, where a significant occurrence of gas pores was observed. Elaborated crack propagation tests were performed to determine the long crack threshold ΔKeff,th and analyse the short crack region. Kitagawa-Takahashi, El-Haddad and Chapetti models were worked out combining fatigue strength, fractographical as well as fracture mechanics characteristics. The Kitagawa-Takahashi and El-Haddad approach mostly revealed non-conservative results over all data sets including several alloy specifications. The application of the Chapetti model, which additionally considers short crack growth, led to an improvement of the practicability of the defect-based model compared to the fatigue test results. Finally it is shown that the Chapetti approach was well appropriate to set-up a generalized, local microstructure-dependent fatigue assessment, especially for the investigated AlSi7Cu0.5Mg cylinder head samples. It can be concluded that the main influence on the fatigue strength was the micropore size, as well as the heat treatment and eutectic modifier, whereas the micropore shape seemed to have less significance. Hence, an application of defect-based models, such as the Kitagawa-Takahashi, El-Haddad and Chapetti approach using simplified pore size parameters such as an equivalent diameter, enables a proper local fatigue assessment of light weight cast aluminium components.

Topics
  • impedance spectroscopy
  • microstructure
  • pore
  • aluminium
  • laser emission spectroscopy
  • crack
  • strength
  • fatigue