Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ottersböck, Markus

  • Google
  • 3
  • 4
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Fatigue assessment of welded and high frequency mechanical impact (HFMI) treated joints by master notch stress approach17citations
  • 2016Effect of weld defects on the fatigue strength of ultra high-strength steels27citations
  • 2015Fatigue Strength of HFMI-treated and Stress-relief Annealed High-strength Steel Weld Joints13citations

Places of action

Chart of shared publication
Leitner, Martin
3 / 66 shared
Stoschka, Michael
3 / 29 shared
Maurer, Wilhelm
1 / 3 shared
Gerstbrein, Stefan
1 / 1 shared
Chart of publication period
2017
2016
2015

Co-Authors (by relevance)

  • Leitner, Martin
  • Stoschka, Michael
  • Maurer, Wilhelm
  • Gerstbrein, Stefan
OrganizationsLocationPeople

article

Fatigue assessment of welded and high frequency mechanical impact (HFMI) treated joints by master notch stress approach

  • Leitner, Martin
  • Ottersböck, Markus
  • Stoschka, Michael
Abstract

High frequency mechanical impact (HFMI) treatment is a reliable and utmost effective method for post-weld fatigue strength improvement of steel joints, especially in case of high-strength steel applications. In 2014, the HFMI master notch stress approach was firstly introduced as an alternative design concept. It features an engineering-feasible method to assess the notch fatigue strength of HFMI-treated joints based on weld toe notch stress concentration, base material yield strength and load stress ratio. This paper presents an essential update of the HFMI master notch stress approach by facilitating the notch factor KW, obtained as the ratio of effective notch stress σk to structural stress σs. This enables a thorough fatigue assessment of welded structures without the need of a nominal cross-section definition. To proof the applicability, a comprehensive validation of the HFMI master notch stress approach incorporating over 230 additional steel joint specimen results covering both constant and variable amplitude tests is conducted. The constant amplitude study reveals that the fatigue strength of the HFMI master notch stress approach, utilizing the notch factor KW, is well applicable for material strengths up to ultra high-strength steels with a nominal yield limit of 1300 MPa. In addition, the notch stress based service strength evaluation of variable amplitude loaded HFMI-treated high-strength steel joints considering a specified damage sum of D = 0.3 according to Sonsino can be also well utilized for HFMI-treated joints.

Topics
  • impedance spectroscopy
  • strength
  • steel
  • fatigue
  • yield strength