Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hutasoit, Novana

  • Google
  • 1
  • 5
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test36citations

Places of action

Chart of shared publication
Cottam, Ryan
1 / 1 shared
Yan, Wenyi
1 / 12 shared
Luzin, Vladimir
1 / 15 shared
Blicblau, Aaron
1 / 1 shared
Brandt, Milan
1 / 16 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Cottam, Ryan
  • Yan, Wenyi
  • Luzin, Vladimir
  • Blicblau, Aaron
  • Brandt, Milan
OrganizationsLocationPeople

article

Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test

  • Cottam, Ryan
  • Yan, Wenyi
  • Luzin, Vladimir
  • Blicblau, Aaron
  • Brandt, Milan
  • Hutasoit, Novana
Abstract

Fatigue life study of structures constructed by laser cladding using two types of hardfacing alloy, Stellite 6 (Co base) and Deloro 40G (Ni base) on AISI 4130 steel substrate was conducted using rotary bending fatigue test at ambient temperature 20 ?C. The laser clad specimens showed a reduced fatigue life compared to the specimen without cladding but of the same size due to the presence of residual stresses in substrate and coating regions. The presence of higher compressive residual stresses in substrate region and lower tensile residual stress in coating region of specimen laser clad with Stellite 6 generated longer fatigue life compared to the specimens laser clad with Deloro 40G, at a similar coating thickness level. With the same final structure size, coating thickness produced an inversely proportional effect on fatigue life where thinner coatings result in less reduction of fatigue life compared to thicker coating. The analytical model employed in this study demonstrated that thinner coatings alters axial residual stress by generating lower tensile residual stress in coating region which enhance fatigue life, compared to thicker coatings. This work has demonstrated the influence of coating type, coating thickness and load level on the fatigue life of the laser clad structures.

Topics
  • laser emission spectroscopy
  • steel
  • fatigue