People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Achintha, Mithila
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Glass–GFRP Laminate: A Proof of Concept Experimental Investigationcitations
- 2023Exploration of Waste Glass Powder as Partial Replacement of Cement in Concretecitations
- 2022Glass–GFRP Sandwich: Structurally Superior Laminated Glass
- 2020Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive jointscitations
- 2019Failure prediction and optimal selection of adhesives for glass/steel adhesive jointscitations
- 2018Strength evaluation and failure prediction of bolted and adhesive glass/steel jointscitations
- 2016A review on design, manufacture and mechanics of composite riserscitations
- 2015An CFRP fabrics as internal reinforcement in concrete beams
- 2015An experimentally validated contour method/eigenstrains hybrid model to incorporate residual stresses in glass structural designscitations
- 2015Experimental and numerical investigation of residual stress relaxation in shot-peened notch geometries under low-cycle fatigue
- 2014Fatigue behaviour of geometric features subjected to laser shock peeningcitations
- 2014Hybrid contour method/eigenstrain model for predicting residual stress in glass
- 2012Fatigue behaviour of geometric features subjected to laser shock peening
- 2012Fatigue behaviour of geometric features subjected to laser shock peening:9th Fatigue Damage of Structural Materials Conference
- 2012Prediction of FRP debonding Using the global-energy-balance approach
- 2011Optimising LSP conditions and modelling the geometric effects on residual stress
- 2009Fracture mechanics of plate debonding
Places of action
Organizations | Location | People |
---|
article
Fatigue behaviour of geometric features subjected to laser shock peening
Abstract
Finite element models, using the eigenstrain approach, are described that predict the residual stress fields associated with laser shock peening (LSP) applied to aerospace grade aluminium alloys. The model was used to explain the results of laboratory fatigue experiments, containing different LSP patch geometries, supplementary stress raising features and different specimen thickness. It is shown that interactions between the LSP process and geometric features are the key to understanding the subsequent fatigue strength. Particularly relevant for engineering application, is the fact that not all instances of LSP application provided an improvement in fatigue performance. Although relatively deep surface compressive residual stresses are generated which can resist fatigue crack initiation in these regions, a balancing tensile stress will always exist and its location must be carefully considered.