Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Billinger, W.

  • Google
  • 1
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Characterisation of the tensile fatigue behaviour of RTM-laminates by isocyclic stress-strain-diagrams17citations

Places of action

Chart of shared publication
Pinter, Gerald
1 / 67 shared
Ladstätter, E.
1 / 1 shared
Lang, R. W.
1 / 6 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Pinter, Gerald
  • Ladstätter, E.
  • Lang, R. W.
OrganizationsLocationPeople

article

Characterisation of the tensile fatigue behaviour of RTM-laminates by isocyclic stress-strain-diagrams

  • Pinter, Gerald
  • Ladstätter, E.
  • Lang, R. W.
  • Billinger, W.
Abstract

<p>In this work a new evaluation method for the characterisation of the fatigue behaviour of carbon/epoxy laminates, manufactured in the resin transfer molding (RTM) process, is introduced. Fatigue data are represented in isocyclic stress-strain diagrams by plotting associated pairs of stress and strain values for each 10<sup>x</sup>th cycle. Isocyclic stress-strain curves are comparable to isochronous stress-strain curves for static tests. These curves represent a material law encompassing reversible visco-elastic effects as well as irreversible damage accumulation and can be used in the design of cyclically loaded components to predict their endurance limits. This paper concentrates on the characterisation of laminates made from compacted fabric packages using binder and sewing techniques and infused with RTM epoxy resins.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • stress-strain curve
  • fatigue
  • resin