People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Drozdov, Aleksey D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Rheology of plant protein–polysaccharide gel inks for 3D food printingcitations
- 2024The Effect of pH on the Viscoelastic Response of Alginate-Montmorillonite Nanocomposite Hydrogelscitations
- 2023The Effect of Physical Aging on the Viscoelastoplastic Response of Glycol Modified Poly(ethylene terephthalate)citations
- 2023Modulation of the Viscoelastic Response of Hydrogels with Supramolecular Bonds
- 2023Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cationscitations
- 2022A model for equilibrium swelling of the upper critical solution temperature type thermoresponsive hydrogelscitations
- 2022Swelling of composite microgels with soft cores and thermo-responsive shellscitations
- 2022Swelling of composite microgels with soft cores and thermo-responsive shellscitations
- 2021Mechanical and microstructural characterization of poly(N-isopropylacrylamide) hydrogels and its nanocompositescitations
- 2021Structure–property relations in linear viscoelasticity of supramolecular hydrogelscitations
- 2020Thermo-mechanical behavior of elastomers with dynamic covalent bondscitations
- 2020Modeling the elastic response of polymer foams at finite deformationscitations
- 2020Modeling electrical conductivity of polymer nanocomposites with aggregated fillercitations
- 2020Tension–compression asymmetry in the mechanical response of hydrogelscitations
- 2020Modeling dielectric permittivity of polymer composites at microwave frequenciescitations
- 2020The effect of porosity on elastic moduli of polymer foamscitations
- 2020Modeling dielectric permittivity of polymer composites filled with transition metal dichalcogenide nanoparticlescitations
- 2020Electromagnetic properties and EMI shielding effectiveness of polymer composites reinforced with ferromagnetic particles at microwave frequenciescitations
- 2020Micromechanical modeling of barrier properties of polymer nanocompositescitations
- 2019Thermal conductivity of highly filled polymer nanocompositescitations
- 2018Double-network gels with dynamic bonds under multi-cycle deformationcitations
- 2018Mechanical response of double-network gels with dynamic bonds under multi-cycle deformationcitations
- 2018Nanocomposite Gels with Permanent and Transient Junctions under Cyclic Loadingcitations
- 2018Modeling the non-isothermal viscoelastic response of glassy polymerscitations
- 2018Time-dependent response of hydrogels under multiaxial deformation accompanied by swellingcitations
- 2018Multi-cycle deformation of supramolecular elastomerscitations
- 2013Stress–strain relations for hydrogels under multiaxial deformationcitations
- 2013Time-Dependent Response of Polypropylene/Clay Nanocomposites Under Tension and Retractioncitations
- 2010Polypropylene/clay nanocomposites
- 2008Pseudo-solid-like behavior of nanocomposite melts
- 2007Cyclic Deformation of Ternary Nanocompositescitations
- 2007Cyclic Viscoplasticity of High-density Polyethylene/Montmorillonite Clay Nanocompositecitations
- 2003Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite
- 2003The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylenecitations
- 2002The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strainscitations
- 2002The nonlinear time-dependent response of isotactic polypropylenecitations
- 2002The elastoplastic response of and moisture diffusion through a vinyl ester resin-clay nanocomposite
- 2002A model for anomalous moisture diffusion through a polymer-clay nanocomposite
- 2002The nonlinear viscoelastic behavior of polypropylene
Places of action
Organizations | Location | People |
---|
article
Multi-cycle deformation of supramolecular elastomers
Abstract
<p>Supramolecular elastomers are rubber-like polymers with double-network structure formed by chains bridged by covalent and non-covalent bonds. Due to high mobility of temporary bonds, whose rate of recombination is comparable with the strain rate under loading, these materials demonstrate such properties as self-healing and self-recovery at ambient temperature. A constitutive model is developed for the viscoelastic and viscoplastic behavior of supramolecular elastomers. Stress–strain relations and the kinetic equations for plastic deformation are derived from the free energy imbalance inequality for an isothermal three-dimensional deformation. The viscoelastic response reflects breakage and reformation of temporary junctions in an inhomogeneous transient network (transition of chains from their active to dangling state and vice versa). The viscoplastic response reflects slippage of permanent junctions with respect to their reference positions. A junction starts to slide when it becomes unbalanced due to transformation of one of the chains connected by this junction from its active state into the dangling state. The sliding process (plastic flow) proceeds until the junction reaches its new equilibrium state. The model is applied to fit experimental data in tensile relaxation tests, loading-unloading tests, and multi-cycle tests on supramolecular elastomers and triblock copolymers. Numerical simulation shows that the governing equations describe adequately the experimental stress–strain diagrams, the material parameters evolve consistently with chemical composition and experimental conditions, and predictions of the model are in qualitative agreement with observations.</p>