Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shufrin, Igor

  • Google
  • 5
  • 1
  • 133

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Effective properties of layered auxetic hybrids15citations
  • 2016Deformation analysis of reinforced-core auxetic assemblies by close-range photogrammetry11citations
  • 2016Thermal stresses in hybrid materials with auxetic inclusions28citations
  • 2015Negative Poisson's ratio in hollow sphere materials42citations
  • 2015Hybrid materials with negative Poisson's ratio inclusions37citations

Places of action

Chart of shared publication
Pasternak, Elena
5 / 15 shared
Chart of publication period
2019
2016
2015

Co-Authors (by relevance)

  • Pasternak, Elena
OrganizationsLocationPeople

article

Hybrid materials with negative Poisson's ratio inclusions

  • Shufrin, Igor
  • Pasternak, Elena
Abstract

© 2015 Elsevier Ltd. All rights reserved. We consider hybrid materials consisting of auxetic (material with negative Poisson's ratio) and non-auxetic phases. The auxetic phase is represented by either spherical or cubic inclusions. We analyse the effective characteristics (the Young's and shear moduli and the Poisson's ratio) computed using either the differential scheme for the effective moduli of composites or the direct finite element simulations. The results are verified through Hashin-Shtrikman bounds. We demonstrate that by creating hybrids from auxetic and non-auxetic phases one can obtain considerable increase in stiffness over the stiffnesses of the phases. The stiffening effect is controlled by the value of the Poisson's ratios of the phases, shape of the auxetic inclusions and their concentration. Depending upon the concentration, the hybrid can be made both auxetic and non-auxetic. Even when the inclusions are cubic the hybrid is still nearly isotropic; it becomes truly orthotropic only when the Poisson's ratio of the auxetic phase is very close to the thermodynamic limit of -1. These findings can be applied directly in designing a new class of hybrid materials with enhanced stiffness.

Topics
  • impedance spectroscopy
  • inclusion
  • phase
  • simulation
  • composite
  • isotropic
  • Poisson's ratio