People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brzeziński, Marek
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
3D printing of dolutegravir-loaded polylactide filaments as a long-acting implantable system for HIV treatment
Abstract
3D printing was used to prepare implantable systems or tablets loaded with dolutegravir to explore their potential as long-acting implantables (LAIs). Our strategy relies on preparing a polylactide (PLA) filament loaded with the anti-HIV drug. Subsequently, 3D printing was performed under conditions that allowed the PLA to be simultaneously melted and the drug encapsulated within the printed strand. The dolutegravir release profiles indicated its sustained release for 47 days. Furthermore, neat and drug-loaded tablets were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), while their morphology was assessed by scanning electron microscopy (SEM). Finally, their biocompatibility was proved by MTT assay against ISO standards recommended L929 mouse and human Hs68 skin fibroblast cells. All the results indicated that the 3D printing of PLA-based tablets could produce customized medications with potential applications against HIV