Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kovalcik, Adriana

  • Google
  • 3
  • 9
  • 45

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Additive manufacturing of bio-based hydrogel composites:recent advances29citations
  • 2021Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling16citations
  • 2015Antibacterial Properties of Lignincitations

Places of action

Chart of shared publication
Mishra, Kirti
1 / 5 shared
Alsanie, Walaa Fahad
1 / 1 shared
Siwal, Samarjeet Singh
1 / 15 shared
Thakur, Vijay Kumar
1 / 125 shared
Saini, Adesh Kumar
1 / 4 shared
Smilek, Jiri
1 / 1 shared
Enev, Vojtěch
1 / 2 shared
Kalina, Michal
1 / 3 shared
Černeková, Nicole
1 / 1 shared
Chart of publication period
2022
2021
2015

Co-Authors (by relevance)

  • Mishra, Kirti
  • Alsanie, Walaa Fahad
  • Siwal, Samarjeet Singh
  • Thakur, Vijay Kumar
  • Saini, Adesh Kumar
  • Smilek, Jiri
  • Enev, Vojtěch
  • Kalina, Michal
  • Černeková, Nicole
OrganizationsLocationPeople

article

Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling

  • Smilek, Jiri
  • Kovalcik, Adriana
  • Enev, Vojtěch
  • Kalina, Michal
  • Černeková, Nicole
Abstract

Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.

Topics
  • Deposition
  • impedance spectroscopy
  • melt
  • extrusion
  • viscosity
  • thermogravimetry
  • copolymer
  • thermoplastic
  • additive manufacturing
  • solidification