People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kalina, Michal
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modellingcitations
- 2020Multiscale experimental evaluation of agarose-based semi-interpenetrating polymer network hydrogels as materials with tunable rheological and transport performancecitations
- 2020Active biodegradable packaging films modified with grape seeds lignincitations
Places of action
Organizations | Location | People |
---|
article
Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling
Abstract
Fused deposition modelling (FDM) is a process of additive manufacturing allowing creating of highly precise complex three-dimensional objects for a large range of applications. The principle of FDM is an extrusion of the molten filament and gradual deposition of layers and their solidification. Potential applications in pharmaceutical and medical fields require the development of biodegradable and biocompatible thermoplastics for the processing of filaments. In this work, the potential of production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) filaments for FDM was investigated in respect to its thermal stability. Copolymer P(3HB-co-4HB) was biosynthesised by Cupriavidus malaysiensis. Rheological and mechanical properties of the copolymer were modified by the addition of plasticizers or blending with poly(lactic acid). Thermal stability of mixtures was studied employing thermogravimetric analysis and rheological analyses by monitoring the time-dependent changes in the complex viscosity of melt samples. The plasticization of P(3HB-co-4HB) slightly hindered its thermal degradation but the best stabilization effect was found in case of the copolymer blended with poly(lactic acid). Overall, rheological, thermal and mechanical properties demonstrated that the plasticized P(3HB-co-4HB) is a potential candidate of biodegradable polymer for FDM processes.