Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koupaei, F. Rafieian

  • Google
  • 1
  • 2
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Polyethersulfone membrane embedded with amine functionalized microcrystalline cellulose41citations

Places of action

Chart of shared publication
Mousavi, Mohammad
1 / 4 shared
Dufresne, Alain
1 / 87 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Mousavi, Mohammad
  • Dufresne, Alain
OrganizationsLocationPeople

article

Polyethersulfone membrane embedded with amine functionalized microcrystalline cellulose

  • Mousavi, Mohammad
  • Koupaei, F. Rafieian
  • Dufresne, Alain
Abstract

<p>In this investigation, microcrystalline cellulose (MCC) was functionalized with metformin HCl using (3-chloropropyl)triethixysilane (CPTES) as a coupling agent. Polyethersulfone (PES) membranes were incorporated with different concentrations of modified MCC (MMCC) to enhance its affinity for heavy metals during filtration of aqueous solutions. The composite membranes were characterized via fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), Brunauer–Emmett–Teller (BET) method, porosity and contact angle measurements and mechanical analysis. The presence of MMCC in the host matrix was confirmed by FTIR. Although composites decomposed at lower temperatures, their thermal stability was sufficient to meet their performance requirements. DSC showed enhanced glass transition temperature (T<sub>g</sub>) due to the interfacial interactions between membrane constituents which restrict the mobility of polymer chains. Microscopic imaging revealed higher surface roughness of composites compared to neat PES. Inclusion of MMCC increased the porosity and hydrophilicity of the membrane which consequently, higher permeability can be achieved.</p>

Topics
  • surface
  • polymer
  • inclusion
  • mobility
  • scanning electron microscopy
  • atomic force microscopy
  • glass
  • glass
  • composite
  • thermogravimetry
  • glass transition temperature
  • permeability
  • differential scanning calorimetry
  • porosity
  • cellulose
  • amine
  • Fourier transform infrared spectroscopy
  • photoelectron spectroscopy