People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panaitescu, Denis Mihaela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Effect of Medium-Chain-Length Alkyl Silane Modified Nanocellulose in Poly(3-hydroxybutyrate) Nanocompositescitations
- 2023Complex Effects of Hemp Fibers and Impact Modifiers in Multiphase Polypropylene Systemscitations
- 2022Opposite Roles of Bacterial Cellulose Nanofibers and Foaming Agent in Polyhydroxyalkanoate-Based Materialscitations
- 2022Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystalscitations
- 2022Bio-Based Poly(lactic acid)/Poly(butylene sebacate) Blends with Improved Toughnesscitations
- 2021The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Partscitations
- 2021Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devicescitations
- 2020Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization.citations
- 2020Effect of hemp fiber length on the mechanical and thermal properties of polypropylene/SEBS/hemp fiber compositescitations
- 2020Low molecular weight and polymeric modifiers as toughening agents in poly(3‐hydroxybutyrate) filmscitations
- 2019Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printingcitations
- 2018Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applicationscitations
- 2015Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocompositescitations
- 2014The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocompositescitations
- 2014Polypropylene/organoclay/SEBS nanocomposites with toughness-stiffness propertiescitations
Places of action
Organizations | Location | People |
---|
article
Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization.
Abstract
The application of bio-based and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is restricted by its high cost and brittleness. In the present work, these deficiencies were overcome by the manufacture of PHBV foams using thermally expandable microspheres (TES). Nanocellulose (Nc) and a crosslinking agent were added to PHBV-TES to control the foam structure and to improve the mechanical properties. Foams with almost perfect pores, well embedded in the polymer matrix, were obtained by a simple melt molding process. The closed-cell foams have a density 2.5-2.7 times lower than that of PHBV. The addition of Nc increased the expansion ratio, cell density and porosity and also led to a more uniform cell size distribution. The incorporation of the crosslinking agent, together with Nc and TES, increased the glass transition temperature with about 7 °C and strengthened the PHBV-Nc interactions. PHBV foams showed a 1.7-3 times higher deformation compared to PHBV and absorbed up to 15 times more energy. The fully biodegradable PHBV-Nc foams obtained in this work exhibit an advantageous porosity, good specific mechanical properties and high energy absorption, being promising alternatives for insulation, packaging or biomedical application.