People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tarrés, Quim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fiberscitations
- 2023Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potentialcitations
- 2023Methodologies to Evaluate the Micromechanics Flexural Strength Properties of Natural-Fiber-Reinforced Composites: The Case of Abaca-Fiber-Reinforced Bio Polyethylene Compositescitations
- 2022Valorization ofkraft lignin from black liquor in the production of composite materials with poly(caprolactone) and natural stone groundwood fiberscitations
- 2022Processing Polymer Blends of Mater-Bi® and Poly-L-(Lactic Acid) for Blown Film Application with Enhanced Mechanical Strengthcitations
- 2020Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young’s Moduluscitations
- 2020Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applicationscitations
- 2020Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fiberscitations
- 2020Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Charactercitations
- 2019Determination of Mean Intrinsic Flexural Strength and Coupling Factor of Natural Fiber Reinforcement in Polylactic Acid Biocompositescitations
- 2019Flexural Properties and Mean Intrinsic Flexural Strength of Old Newspaper Reinforced Polypropylene Compositescitations
- 2017Sugarcane bagasse reinforced compositescitations
Places of action
Organizations | Location | People |
---|
article
Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications
Abstract
Lignin (LIG) is a renewable biopolymer with well-known antimicrobial and antioxidant properties. In the present work LIG was combined with poly(butylene succinate) (PBS), a biocompatible/biodegradable polymer, to obtain composites with antimicrobial and antioxidant properties. Hot melt extrusion was used to prepare composites containing up to 15% (w/w) of LIG. Water contact angle measurements suggested that the incorporation of LIG did not alter the wettability of the material. The material density increased slightly when LIG was incorporated (<1%). Moreover, the melt flow index test showed an increase in the fluidity of the material (from 6.9 to 27.7 g/10 min) by increasing the LIG content. The Young's modulus and the tensile deformation of the material were practically unaffected when LIG was added. Infrared spectroscopy and differential scanning calorimeter confirmed that there were interactions between LIG and PBS. The DPPH assay was used to evaluate the antioxidant properties of the materials. The results suggested that all the materials were capable of reducing the DPPH concentrations up to 80% in <5 h. Finally, LIG-containing composites showed resistance to adherence of the common nosocomial pathogen, Staphylococcus aureus. All tested materials showed ca. 90% less bacterial adherence than PBS.