People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sevrin, Chantal
General Electric (Finland)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2022Polyhydroxyalkanoates from A Mixed Microbial Culturecitations
- 2022Polyhydroxyalkanoates from A Mixed Microbial Culture ; Extraction Optimization and Polymer Characterizationcitations
- 2021Production of medium-chain-length polyhydroxyalkanoates by Pseudomonascitations
- 2021Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate).citations
- 2021Preparation and characterization of porous scaffolds based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)citations
- 2020Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivitycitations
- 2019Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerolcitations
- 2019Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp wastecitations
- 2019Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp wastecitations
- 2017Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon sourcecitations
- 2016Assessment of the adhesive properties of the bacterial polysaccharide FucoPolcitations
Places of action
Organizations | Location | People |
---|
article
Assessment of the adhesive properties of the bacterial polysaccharide FucoPol
Abstract
<p>To address the industry's interest in finding novel biobased glues, the adhesive properties of the bacterial polysaccharide FucoPol were evaluated through shear bond strength tests. A FucoPol solution was used to bond different materials, namely, wood, glass, cardboard and cellulose acetate film. The shear strength was compared to that of the same adherends bonded with commercial synthetic glues. Wood-wood joints bonded with FucoPol formulation withstood 742.2 ± 9.8 kPa shear strength without detachment. FucoPol adhesive capacity for cardboard was comparable to that of the tested commercial glues (425 ± 8.9 kPa), yielding similar shear strength values (416.0 ± 12.9 kPa), while improved performance was shown for glass (115.1 ± 26.2 kPa) and cellulose acetate film (153.7 ± 11.3 kPa) comparing to the commercial glues (67.7–97.5 kPa and 79.4–92.7 kPa, respectively). This study demonstrates the adhesive properties of FucoPol, opening up the opportunity of using this bacterial polysaccharide for the development of new natural water-based glues, suitable to bond different materials.</p>