Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khunawattanakul, Wanwisa

  • Google
  • 4
  • 5
  • 158

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2013Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine25citations
  • 2011Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets38citations
  • 2010Chitosan-magnesium aluminum silicate nanocomposite films43citations
  • 2008Chitosan-magnesium aluminum silicate composite dispersions52citations

Places of action

Chart of shared publication
Pongjanyakul, Thaned
4 / 7 shared
Gordon, Keith C.
1 / 14 shared
Rades, Thomas
4 / 107 shared
Puttipipatkhachorn, Satit
4 / 6 shared
Strachan, Clare J.
1 / 10 shared
Chart of publication period
2013
2011
2010
2008

Co-Authors (by relevance)

  • Pongjanyakul, Thaned
  • Gordon, Keith C.
  • Rades, Thomas
  • Puttipipatkhachorn, Satit
  • Strachan, Clare J.
OrganizationsLocationPeople

article

Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

  • Pongjanyakul, Thaned
  • Gordon, Keith C.
  • Rades, Thomas
  • Khunawattanakul, Wanwisa
  • Puttipipatkhachorn, Satit
  • Strachan, Clare J.
Abstract

The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive properties, were investigated. Molecular interactions between the components of the film were also investigated. The results indicated that NCT-loaded CS-MAS films provided a higher NCT content than NCT-loaded films containing only CS. The greater the MAS ratio in the films, the higher the NCT content that was observed because intercalated nanocomposites could be formed by electrostatic interactions of MAS with NCT and CS. These interactions caused an insignificant loss of NCT by evaporation during film drying. The release and permeation of NCT were related to the square root of time, indicating that a diffusion-controlled mechanism via the NCT-MAS complex particles and the film matrix controls NCT release. NCT release and permeation rates decreased with as the MAS ratio of the films was increased. However, the NCT-loaded CS-MAS films may have a potential adhesion to the mucosal membrane. These findings suggest that NCT-loaded CS-MAS films can be used as a buccal NCT delivery system.

Topics
  • nanocomposite
  • Magnesium
  • Magnesium
  • aluminium
  • evaporation
  • drying