People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Granja, Pl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2015Understanding the composition-structure-bioactivity relationships in diopside (CaO center dot MgO center dot 2SiO(2))-tricalcium phosphate (3CaO center dot P2O5) glass systemcitations
- 2012Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gelscitations
- 2010Anti-adhesion and antiproliferative cellulose triacetate membrane for prevention of biomaterial-centred infections associated with Staphylococcus epidermidiscitations
- 2009Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectorscitations
- 2006Functionalization of chitosan membranes through phosphorylation: Atomic force microscopy, wettability, and cytotoxicity studiescitations
- 2001Staphylococcus epidermidis RP62A adhesion to chemically modified cellulose derivativescitations
Places of action
Organizations | Location | People |
---|
article
Anti-adhesion and antiproliferative cellulose triacetate membrane for prevention of biomaterial-centred infections associated with Staphylococcus epidermidis
Abstract
The initial step in preventing biomaterial-associated infections consists of preventing bacterial adhesion to the device surface. One possible approach is the design of antibiotic-releasing biomaterials. Cellulose triacetate (CTA) membranes with the antibiotic imipenem (IPM) entrapped (CTA-IPM) were prepared. The material was characterised in terms of surface morphology by scanning electron microscopy, surface free energy of interaction and X-ray photoelectron spectroscopy (XPS). Antibiotic release studies were also performed. In vitro adhesion of Staphylococcus epidermidis RP62A to CTA-IPM was investigated using a modified microtitre plate assay, and the antibacterial activity of the CTA-IPM membrane was assessed by a modified Kirby-Bauer test, which showed effective entrapment of the antibiotic as confirmed by XPS and hydrophilicity assays. Release studies showed that this drug-polymer conjugate serves as an adequate reservoir for sustained release of IPM over a period of 71 h at an effective bacteriostatic concentration. Moreover, bacterial adhesion tests showed a statistically significant decrease in the adhesion of S. epidermidis RP62A to CTA-IPM compared with its adhesion to CTA alone. The present innovative approach is capable of providing a membrane with anti-adhesive and antiproliferative properties, thus encouraging in vivo studies to provide a better simulation of the clinical situation.