Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Louter, Pieter Christiaan

  • Google
  • 1
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mechanical and chemical analysis of structural silicone adhesives with the influence of artificial aging14citations

Places of action

Chart of shared publication
Giese-Hinz, Johannes
1 / 2 shared
Christiane, Dr. Kothe
1 / 9 shared
Weller, Bernhard
1 / 27 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Giese-Hinz, Johannes
  • Christiane, Dr. Kothe
  • Weller, Bernhard
OrganizationsLocationPeople

article

Mechanical and chemical analysis of structural silicone adhesives with the influence of artificial aging

  • Louter, Pieter Christiaan
  • Giese-Hinz, Johannes
  • Christiane, Dr. Kothe
  • Weller, Bernhard
Abstract

Structural sealant glazing systems, or bonded glazing, refers to façades in which the glass is structurally bonded to a façade frame and which is typically used in large façades for office buildings. The structural silicone bond lines are an essential element of such façades and a variety of environmental influences and aggressive media interact with the adhesive and may affect its performance. The ETAG 002 is commonly used for the verification of the technical applicability taking these effects into account. In this study, samples of an approved standard silicone adhesive and a high-modulus silicone adhesive are artificially aged according to ETAG 002 and exposed to a climate change test. The aim of this study is to determine the essential mechanical properties and to explain the changes due to aging by means of chemical analysis. Polymer degradations are determined by evaluating the molecular structure with Fourier-transform Infrared Spectroscopy and Thermo-Gravimetric analysis. In addition, water absorption is investigated with Karl Fischer titration. Changes in the chemical structure are particularly identified after aging in SO2 atmosphere as well as after UV exposure. Increased water contents are detected for all specimens conducted to high moisture. The mechanical properties as well as their characteristic temperature ranges are determinate by the Dynamic Mechanical Analysis and Differential Scanning Calorimetry. The results of the study show significant loss of the adhesive stiffness up to 30% after artificial aging, mainly after storage in cleaning agent and after climate change test. However, there are no significant chemical effects of both aging methods on the adhesives. On the other hand UV-radiation as well as the acid attack, interact with the polysiloxane and the filler of the adhesive. This shifts the crystallization temperature a bit but it does not influence the adhesive stiffness at room temperature. Finally, tensile tests and shear tests are performed on both reference and aged bonded glass–aluminum specimens. These test confirm the good durability of silicone adhesives and the results meet the requirements of the ETAG 002.

Topics
  • impedance spectroscopy
  • polymer
  • aluminium
  • glass
  • glass
  • shear test
  • differential scanning calorimetry
  • aging
  • crystallization
  • molecular structure
  • aging
  • infrared spectroscopy
  • crystallization temperature
  • dynamic mechanical analysis
  • titration
  • gravimetric analysis