People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katsivalis, Ioannis
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Hydrogen permeability of thin-ply composites after mechanical loadingcitations
- 2024Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape compositescitations
- 2024Strength analysis and failure prediction of thin tow-based discontinuous compositescitations
- 2024Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2024A 3D voxel-based mesostructure generator for finite element modelling of tow-based discontinuous compositescitations
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Multilayer leading edge protection systems of wind turbine blades
- 2022Multilayer leading edge protection systems of wind turbine blades:A review of material technology and damage modelling
- 2022Multilayer Leading Edge Protection Systems of Wind Turbine Blades. A Review of Material Technology and Damage Modelling
- 2022Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applicationscitations
- 2022Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
- 2020Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive jointscitations
- 2019Failure prediction and optimal selection of adhesives for glass/steel adhesive jointscitations
- 2018Strength evaluation and failure prediction of bolted and adhesive glass/steel jointscitations
Places of action
Organizations | Location | People |
---|
article
Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive joints
Abstract
The use of mild steel/tempered glass adhesive joints has increased rapidly over recent years. Cohesive zone modelling (CZM) is used extensively for the numerical analysis and failure prediction of adhesive joints. As the bonding to the glass surface is generally weaker than the bonding to metal substrates, and therefore the development of cohesive laws by testing on different substrates generally leads to overoptimistic and non-conservative predictions. However, the interface characterisation using standardised methods for glass/steel joints is complicated due to the relatively low strength of the glass substrate leading to premature failure. This paper presents modifications proposed for the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests used to extract traction-separation laws for glass/steel adhesive joints in fracture modes I and II. For this purpose, an in-house glass heat strengthening process was developed. The cohesive laws were validated by comparing the numerical predictions for two different adhesives with experimental tests obtained for double lap shear joints subjected to four different load cases.This is the first time, traction-separation laws were extracted and validated against experimental data using glass substrates.