Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Quinn, Simon

  • Google
  • 3
  • 7
  • 119

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Identification of kissing defects in adhesive bonds using infrared thermography58citations
  • 2016Identification of kissing defects in adhesive bonds using infrared thermography58citations
  • 2008Tribocorrosion damage of a Jethete M152 type stainless steel3citations

Places of action

Chart of shared publication
Tighe, Rachael C.
2 / 3 shared
Barton, Janice M.
1 / 18 shared
Dulieu-Barton, Janice M.
1 / 60 shared
Starink, M. J.
1 / 37 shared
Wang, S. C.
1 / 10 shared
Wood, Robert J. K.
1 / 93 shared
Wharton, Julian A.
1 / 27 shared
Chart of publication period
2016
2008

Co-Authors (by relevance)

  • Tighe, Rachael C.
  • Barton, Janice M.
  • Dulieu-Barton, Janice M.
  • Starink, M. J.
  • Wang, S. C.
  • Wood, Robert J. K.
  • Wharton, Julian A.
OrganizationsLocationPeople

article

Identification of kissing defects in adhesive bonds using infrared thermography

  • Tighe, Rachael C.
  • Dulieu-Barton, Janice M.
  • Quinn, Simon
Abstract

A carbon fibre reinforced plastic (CFRP) adhesively bonded single lap joint sample is used for comparing the detection of different defect types using pulsed phase thermography (PPT). Firstly, a polytetrafluoroethene (PTFE) insert, of the type widely used to simulate defects in composite materials, was added to the bond line of the joint. Liquid layer kissing defects were simulated using silicon grease. PPT clearly identified the PTFE but not the silicon grease contamination. The PPT identified the silicon grease defect when the joint was loaded. It is postulated that kissing defects can be detected using thermography if a small load is applied to the joint, as loading opens the defect and produces a gap that provides sufficient thermal contrast for detection. Thermoelastic stress analysis (TSA) is used to validate the approach. On-site application is addressed both in terms of the load application and the use of low cost infrared (IR) detectors.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • phase
  • composite
  • Silicon
  • defect
  • thermography