People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferrari, Marco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Piezoelectric MEMS Flexural-Plate-Wave Transducer for Alignment of Microparticles in a Drying Dropletcitations
- 2023Flexural Plate Wave Piezoelectric MEMS Pressure Sensorcitations
- 2023Cell Alignment in Aqueous Solution Employing a Flexural Plate Wave Piezoelectric MEMS Transducercitations
- 2023Application of dissipative particle dynamics to interfacial systems: Parameterization and scalingcitations
- 2022Flexural Plate Wave Piezoelectric MEMS Transducer for Cell Alignment in Aqueous Solutioncitations
- 2022Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geologycitations
- 2022Reflectance of silicate glasses in the mid-infrared region (MIR): Implications for planetary researchcitations
- 2021Mineralogical implications for the 1-micron feature in the refined average spectrum of Ceres
- 2021High-Pressure Synthesis and Gas-Sensing Tests of 1-D Polymer/Aluminophosphate Nanocompositescitations
- 2021High-Pressure Synthesis and Gas-Sensing Tests of 1-D Polymer/Aluminophosphate Nanocompositescitations
- 2019NIR and mid-IR spectroscopy on silicate glasses for the characterization of magmatic bodies on terrestrial planets.
- 2018Spectroscopy on silicate glasses from two magmatic series: implications for planetary studies.
- 2017Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramicscitations
- 2017FT-IR and μ-IR analysis of Carbonaceous Chondrite meteorites characterization as possible analogue of next sample returned materials
- 2016Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses
- 2014Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses
- 2014Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 2: outsourcing materials
- 2013Flexural resistance of Cerec CAD/CAM system ceramic blocks
- 2012In Situ Collection of Refractory Dust in the Upper Stratosphere: The DUSTER Facilitycitations
- 2006Acid etching surface treatment of feldspathic, alumina and zirconia ceramics: a micro-morphological SEM analysis.
Places of action
Organizations | Location | People |
---|
article
Reflectance of silicate glasses in the mid-infrared region (MIR): Implications for planetary research
Abstract
Volcanic phenomaena shaped the surface of all terrestrial planets in the solar system, and silicate glasses represent a major component in pyroclastic deposits and lavas. Spectral features of silicate glasses therefore influence spectral characteristics of large portions of planetary surfaces. <P />In this study, experimental petrology techniques have been used to produce 19 silicate glass samples having natural chemical composition corresponding to four of the most common magmatic series on planet Earth. Reflectance of such products was investigated in the mid-infrared region (MIR) to observe the evolution of their spectral characteristics with changing degree of evolution (expressed as silica content) and alkaline content. We have observed how chemical features have a clear influence in shifting the spectral features (to lower wavelengths with increasing silica, such as for previously studied volcanic rocks) and on the spectral shape, which is substantially different between mafic and highly silicic products. This allowed us to propose a model to retrieve chemical information (SiO<SUB>2</SUB> and SiO<SUB>2</SUB> + Al<SUB>2</SUB>O<SUB>3</SUB> + TiO<SUB>2</SUB> content) from the wavelength at which spectral features (CF and RB<SUB>peak</SUB>) occur. Moreover, by comparing our results with previous MIR studies we have observed that our model can be applied, to a certain extent, to interpret chemical fingerpint volcanic rocks in general. Here, it is also shown how granulometry influences spectral shape, but does not affect spectral shift. <P />This study will be useful to interpret planetary information and assess how amorphous silicate phases influence spectral characteristics of volcanic areas on planetary surfaces....