People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Angelis, Simone
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geologycitations
- 2022Reflectance of silicate glasses in the mid-infrared region (MIR): Implications for planetary researchcitations
- 2019NIR and mid-IR spectroscopy on silicate glasses for the characterization of magmatic bodies on terrestrial planets.
- 2018Spectroscopy on silicate glasses from two magmatic series: implications for planetary studies.
- 2017Laboratory experiments on ammoniated clay minerals with relevance for asteroid (1) Ceres
- 2012In Situ Collection of Refractory Dust in the Upper Stratosphere: The DUSTER Facilitycitations
Places of action
Organizations | Location | People |
---|
article
Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geology
Abstract
Silicate glasses represent a major component in volcanic products, both in pyroclastic deposits and lavas. To date, their spectral characteristics are not thoroughly investigated in the context of their characterization as possible analogues of planetary surfaces, mainly due to their lack of spectral features. Nevertheless, featureless VIS-NIR spectra for which it is only possible to retrieve relative parameters (slope, albedo) are commonly observed on the surface of planetary bodies, and volcanic structures are supposed to be widely present in all terrestrial planets within the Solar System. Therefore, the correct interpretation of their geochemical signature is important in the attempt to shed new light on the evolution of these planets, and detailed knowledge about the spectral response of silicate glasses is fundamental for such a purpose. <P />In this study, experimental petrology techniques have been used to produce 15 silicate glasses having complex chemical composition corresponding to three of the most common magmatic series on planet Earth. These glasses have been investigated in the Visible and Near/Infrared range to observe and interpret the variation of slope, albedo, and spectral ratio R<SUB>1.55</SUB>/R<SUB>0.8</SUB> as a function of chemical composition. We found that, despite the complexity of factors influencing the spectral response, a good correlation can be derived linking spectral parameters with both iron content and composite Silicium-Calcium-Iron-Magnesium content (SCFM parameter). Results presented in this work might represent the baseline for new research lines focused on deciphering the significance of silicate glasses in the context of planetary exploration, opening new windows to access information on planetary differentiation that cannot be obtained using only existing materials and methods....