Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barnouin, Olivier S.

  • Google
  • 2
  • 9
  • 152

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion60citations
  • 2018Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths92citations

Places of action

Chart of shared publication
Zhang, Yun
2 / 8 shared
Michel, Patrick
2 / 14 shared
Richardson, Derek C.
2 / 10 shared
Manzoni, Claudia
1 / 1 shared
Tsiganis, Kleomenis
1 / 1 shared
Agrusa, Harrison F.
1 / 1 shared
May, Brian H.
1 / 1 shared
Ballouz, Ronald-Louis
1 / 4 shared
Schwartz, Stephen R.
1 / 4 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Zhang, Yun
  • Michel, Patrick
  • Richardson, Derek C.
  • Manzoni, Claudia
  • Tsiganis, Kleomenis
  • Agrusa, Harrison F.
  • May, Brian H.
  • Ballouz, Ronald-Louis
  • Schwartz, Stephen R.
OrganizationsLocationPeople

article

Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion

  • Zhang, Yun
  • Michel, Patrick
  • Richardson, Derek C.
  • Barnouin, Olivier S.
  • Manzoni, Claudia
  • Tsiganis, Kleomenis
  • Agrusa, Harrison F.
  • May, Brian H.
Abstract

The binary asteroid 65803 Didymos-Dimorphos is the target of the first asteroid deflection test (NASA's Double Asteroid Redirection Test, DART) and the first binary asteroid system that will be characterized by a rendezvous mission (ESA's Hera). The cohesive strength of the fast-spin-primary Didymos is a key factor that could affect the impact outcome and stability of this system. To support the preparation and data interpretation of these missions and gain a better understanding of the formation and evolution of this system, we investigate the structural stability and cohesive strength of Didymos based on current observational information. We use the Didymos radar shape model to construct rubble-pile models consisting of ~40,000 to ~100,000 particles with different arrangements and size distributions. To investigate the effect of cohesion on the structural stability and dynamical behaviors of Didymos, we explicitly simulate the YORP spin-up process of these rubble-pile models from a slow spin state to Didymos' current spin state using a high-efficiency soft-sphere-discrete-element-model code, pkdgrav. We test the creep stability of Didymos' rubble-pile representation with different values of cohesion and derive the critical amount of cohesion to maintain stability. The results show that Didymos should at least have a minimum bulk cohesion on the order of 10 Pa to maintain its structural stability if the interparticle tensile strength is uniformly distributed. Since the surface particles are less bonded by cohesive contacts than the interior particles, the internal macroscopic cohesion is about three times the surface macroscopic cohesion. We find that the bulk density and particle arrangement and size distribution of Didymos have significant influences on its critical cohesion and failure behaviors, indicating different binary formation pathways. With the critical cohesion, Didymos is at the edge of maintaining a stable shape, and a rapid small decrease in its spin period would excite its rubble-pile structure and lead to reshaping or mass shedding. Whether the DART impact could partially or globally destabilize this system requires further investigation of the full two-body gravitational dynamics and the ejecta evolution. With the expected measurements returned by DART's onboard cubesat LICIACube in 2022 and Hera in 2027, the correlations between Didymos' physical properties and failure behaviors found in this study may be possible to constrain the mechanical properties and evolutionary history of this binary system....

Topics
  • density
  • impedance spectroscopy
  • surface
  • laser emission spectroscopy
  • strength
  • tensile strength
  • creep