Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guillou, Corentin Le

  • Google
  • 2
  • 8
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Amorphization and D/H fractionation of kerogens during experimental electron irradiation: Comparison with chondritic organic matter40citations
  • 2012High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity47citations

Places of action

Chart of shared publication
Remusat, Laurent
2 / 8 shared
Leroux, Hugues
1 / 12 shared
Bernard, Sylvain
1 / 4 shared
Brearley, Adrian J.
1 / 2 shared
Rouzaud, Jean-Noel
1 / 2 shared
Bonal, Lydie
1 / 7 shared
Derenne, Sylvie
1 / 1 shared
Quirico, Eric
1 / 12 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Remusat, Laurent
  • Leroux, Hugues
  • Bernard, Sylvain
  • Brearley, Adrian J.
  • Rouzaud, Jean-Noel
  • Bonal, Lydie
  • Derenne, Sylvie
  • Quirico, Eric
OrganizationsLocationPeople

article

Amorphization and D/H fractionation of kerogens during experimental electron irradiation: Comparison with chondritic organic matter

  • Remusat, Laurent
  • Guillou, Corentin Le
  • Leroux, Hugues
  • Bernard, Sylvain
  • Brearley, Adrian J.
Abstract

Irradiation is common in the interstellar medium and the protosolar nebula. We have investigated the effects of electron irradiation on kerogens of type I and III in a 200 kV transmission electron microscope (TEM), at 293 K and 92 K, using various fluences. Using synchrotron-based scanning transmission X-ray microscopy (STXM) and NanoSIMS, we have demonstrated a progressive amorphization coupled with hydrogen loss and a significant deuterium to hydrogen ratio (D/H) fractionation, with dD increasing by up to 1000‰. Hydrogen loss is non-linearly related to the fluence. Irradiation under cryogenic conditions (92 K) hinders amorphization and D/H elevation. We suggest that these effects are controlled by radiolysis (carbonAhydrogen bonds are broken and hydrogen is lost), coupled with recombination. The amorphization and hydrogen loss are rate-limited by defect diffusion which controls the recombination probability. The D/H increase appears to follow a Rayleigh distillation law with an apparent fractionation factor similar to the equilibrium fractionation factor of the isotopic exchange reaction CH4 + HDMCH3- D + H2. This study represents a first step to estimate the kinetics and timescales of D/H fractionation under ionizing radiation. Extrapolatation of this fractionation behavior to natural environments remains difficult at this point because simultaneous irradiation by protons and other cosmic rays at various energies also occurs. However, the present results show that isotopic fractionation by electron irradiation at 200 kV alone might have been kinetically inhibited at the low temperatures of the interstellar medium and the outer region of the protosolar nebula. In addition, we show that STXM or NanoSIMS experiments should not be performed on organic samples that have already been investigated using TEM, even under low flux electron irradiation conditions.

Topics
  • impedance spectroscopy
  • experiment
  • Hydrogen
  • transmission electron microscopy
  • defect
  • distillation
  • fractionation