Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murphy, B. P.

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006The formation and isolation of benzisothiazole rings from the reactions of oxime-thiophenolate ligands9citations

Places of action

Chart of shared publication
Smith, P. D.
1 / 1 shared
Fierro, C. M.
1 / 1 shared
Coles, Sj
1 / 29 shared
Hursthouse, M. B.
1 / 10 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Smith, P. D.
  • Fierro, C. M.
  • Coles, Sj
  • Hursthouse, M. B.
OrganizationsLocationPeople

article

The formation and isolation of benzisothiazole rings from the reactions of oxime-thiophenolate ligands

  • Murphy, B. P.
  • Smith, P. D.
  • Fierro, C. M.
  • Coles, Sj
  • Hursthouse, M. B.
Abstract

The reaction of [Ni(eftp)] (eftp = N, N-ethylene(6-formyl-4-methyliminatothiophenolato)] with hydroxylamine hydrochloride in the presence of potassium acetate in MeOH resulted in the formation of [Ni(L)(2)], L = 2-mercapto-5-methyl-3-({2-[(5-methylbenzo[d]isothiazol-7-ylmethylene)-am ino]-ethylimino)-methyl)-benzonitrile. A single-crystal X-ray diffraction structural determination showed that the oxime groups of the proposed new binucleating ligand had reacted to produce a nitrite and an isothiazole ring, while two ligand molecules combined with one Ni(II) ion to form a new complex with a cis-S2N2 square-planar geometry. Also, the reaction of 2,6-diformyl-4-methylphenyl disulfide with hydroxylamine in MeCN resulted in the synthesis of 5-methyl-2-oxybenzo[d]isothiazole-7-carbaldehyde oxime, where an isothiazole ring had formed via the cleavage of the disulfide bond. Again, a single-crystal X-ray diffraction study confirmed the presence of a benzisothiazole product.

Topics
  • x-ray diffraction
  • Potassium
  • additive manufacturing
  • chemical ionisation