People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morris, Christina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Biomining of critical minerals from ores and wastes: progress and prospects
- 2023Biomining critical minerals from low-grade ores and wastes
- 2019Effect of Quorum Sensing on the Ability of Desulfovibrio vulgaris To Form Biofilms and To Biocorrode Carbon Steel in Saline Conditions.citations
- 2018Recent progress in biohydrometallurgy and microbial characterisationcitations
Places of action
Organizations | Location | People |
---|
article
Recent progress in biohydrometallurgy and microbial characterisation
Abstract
<p>Since the discovery of microbiological metal dissolution, numerous biohydrometallurgical approaches have been developed to use microbially assisted aqueous extractive metallurgy for the recovery of metals from ores, concentrates, and recycled or residual materials. Biohydrometallurgy has helped to alleviate the challenges related to continually declining ore grades by transforming uneconomic ore resources to reserves. Engineering techniques used for biohydrometallurgy span from above ground reactor, vat, pond, heap and dump leaching to underground in situ leaching. Traditionally biohydrometallurgy has been applied to the bioleaching of base metals and uranium from sulfides and the biooxidation of sulfidic refractory gold ores and concentrates before cyanidation. More recently the interest in using bioleaching for oxide ore and waste processing, as well as extracting other commodities such as rare earth elements has been growing. Bioprospecting, adaptation, engineering and storing of microorganisms has increased the availability of suitable biocatalysts for biohydrometallurgical applications. Moreover, the advancement of microbial characterisation methods has increased the understanding of microbial communities and their capabilities in the processes. This paper reviews recent progress in biohydrometallurgy and microbial characterisation.</p>