Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hmadeh, Mohamad

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of amino functional groups on the surface properties and Lewis's acid base parameters of UiO-66(NH<inf>2</inf>) by inverse gas chromatography4citations

Places of action

Chart of shared publication
Hamieh, Tayssir
1 / 35 shared
Ali-Ahmad, Ali
1 / 1 shared
Toufaily, Joumana
1 / 20 shared
Roques-Carmes, Thibault
1 / 8 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Hamieh, Tayssir
  • Ali-Ahmad, Ali
  • Toufaily, Joumana
  • Roques-Carmes, Thibault
OrganizationsLocationPeople

article

Effect of amino functional groups on the surface properties and Lewis's acid base parameters of UiO-66(NH<inf>2</inf>) by inverse gas chromatography

  • Hmadeh, Mohamad
  • Hamieh, Tayssir
  • Ali-Ahmad, Ali
  • Toufaily, Joumana
  • Roques-Carmes, Thibault
Abstract

Amino-functionalized metal organic frameworks (MOFs) have attracted much attention for various applications such as carbon dioxide capture, water remediation and catalysis. The focus of this study is to determine the surface and Lewis's acid-base properties of UiO-66(NH2) crystals by the inverse gas chromatography (IGC) technique at infinite dilution. The latter was applied to evaluate the dispersive component of the surface energy ?sd(T) by using thermal model and several molecular models. The obtained results proved that ?sd(T) decreases when the temperature increases. The best results were achieved by using the thermal model that takes into account the effect of the temperature on the surface areas of the organic molecules. We also observed a decrease of the Gibbs surface free energy of adsorption by increasing the temperature of the different organic solvents. The polar interactions of UiO-66(NH2) were obtained by using the methods of Saint-Flour Papirer, Donnet et al., Brendlé-Papirer and the different molecular models. The Lewis's acid base constants KA and KD were further calculated by determining the different variables of adsorption of the probes on the solid surface and the obtained values were 1.07 and 0.45 for KA and KD respectively, with an acid-base ratio (KA/KD) of 2.38. These values showed the high acidic surface of the solid substrate; whereas, the values of the entropic acid base parameters, ?A, ?D and ?A/?D respectively equal to 1.0×10-3, 3.8×10-4 and 2.73, also highlighted the important acidity of UiO-66-(NH2) surface. These important findings suggest that the surface defects (missing linkers and/or clusters) in UiO-66(NH2) are the main determining factor of the acid-base properties of UiO-66 based structures.

Topics
  • impedance spectroscopy
  • surface
  • cluster
  • Carbon
  • defect
  • surface energy
  • inverse gas chromatography