Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santos, Gildo Coelho

  • Google
  • 1
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Post-fatigue fracture load, stress concentration and mechanical properties of feldspathic, leucite- and lithium disilicate-reinforced glass ceramics8citations

Places of action

Chart of shared publication
Jpm, Tribst
1 / 88 shared
Capobianco, Vinicius
1 / 1 shared
Santos, Maria Jacinta Moraes Coelho
1 / 1 shared
Rubo, José Henrique
1 / 1 shared
Rizkalla, Amin S.
1 / 1 shared
Vitti, Rafael Pino
1 / 5 shared
Baroudi, Kusai
1 / 10 shared
Dal Piva, Amanda
1 / 41 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jpm, Tribst
  • Capobianco, Vinicius
  • Santos, Maria Jacinta Moraes Coelho
  • Rubo, José Henrique
  • Rizkalla, Amin S.
  • Vitti, Rafael Pino
  • Baroudi, Kusai
  • Dal Piva, Amanda
OrganizationsLocationPeople

article

Post-fatigue fracture load, stress concentration and mechanical properties of feldspathic, leucite- and lithium disilicate-reinforced glass ceramics

  • Jpm, Tribst
  • Capobianco, Vinicius
  • Santos, Maria Jacinta Moraes Coelho
  • Rubo, José Henrique
  • Rizkalla, Amin S.
  • Vitti, Rafael Pino
  • Santos, Gildo Coelho
  • Baroudi, Kusai
  • Dal Piva, Amanda
Abstract

<p>Objective: To evaluate the mechanical properties of different CAD/CAM ceramic systems and the post-fatigue fracture and stress distribution when used as cemented crowns. Materials and methods: Sixty (60) CAD/CAM monolithic crowns were milled using three different ceramic materials (FD – Feldspathic [Vita Mark II]), LE - Leucite-based ceramic [IPS Empress CAD] and LD - Lithium Disilicate [IPS e.max CAD]) and adhesively cemented on resin composite dyes. Specimens were stored in distillated water (37 °C) for 7 days. After, half of the crowns were submitted to immediate fracture load test while the other half was submitted to fatigue cycling. The average cement layer of approximately 80 μm was assessed using scanning electron microscopy (SEM). The average thickness was used in the three-dimensional (3D) Finite Element Analysis (FEA). For each ceramic material, the density, Poisson ratio, shear modulus, Young modulus, fracture toughness, and true hardness were assessed (n = 3). The data was used to assess the Maximum Principal Stress throughout 3D-FEA according to each material during load to fail and post-fatigue. Data were submitted to two-way ANOVA and Tukey test (α = 0.05). Results: LD showed the highest compression load, density, shear modulus, Young modulus, fracture toughness and true hardness values. While LE presented the lowest mechanical properties values. There is no difference in the Poisson ratio between the evaluated ceramics. Conclusion: LD was susceptible to aging process but presented stronger physicomechanical properties, showing the highest post-fatigue fracture load and highest stress magnitude.</p>

Topics
  • density
  • impedance spectroscopy
  • scanning electron microscopy
  • glass
  • glass
  • fatigue
  • composite
  • cement
  • hardness
  • Lithium
  • aging
  • ceramic
  • resin
  • finite element analysis
  • fracture toughness
  • aging
  • collision-induced dissociation