Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rempel, Kirsten

  • Google
  • 2
  • 9
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Efficient gold scavenging by iron sulfide colloids in an epizonal orogenic gold deposit2citations
  • 2018Crude oil as ore fluids: an experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250 °C28citations

Places of action

Chart of shared publication
Li, Jian Wei
1 / 1 shared
Wu, Ya Fei
1 / 1 shared
Evans, Katy
1 / 1 shared
Williams-Jones, Anthony E.
1 / 1 shared
Liu, Weihua
1 / 2 shared
Crede, Lars
1 / 1 shared
Evans, Katy A.
1 / 1 shared
Brugger, Joël
1 / 2 shared
Testemale, Denis
1 / 4 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Li, Jian Wei
  • Wu, Ya Fei
  • Evans, Katy
  • Williams-Jones, Anthony E.
  • Liu, Weihua
  • Crede, Lars
  • Evans, Katy A.
  • Brugger, Joël
  • Testemale, Denis
OrganizationsLocationPeople

article

Crude oil as ore fluids: an experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250 °C

  • Liu, Weihua
  • Crede, Lars
  • Evans, Katy A.
  • Rempel, Kirsten
  • Brugger, Joël
  • Testemale, Denis
Abstract

Organic matter is often associated with mineralization in hydrothermal ore deposits. One hypothesis is that this organic matter represents remnants of organic fluids (crude oils) that were competing with aqueous fluids for metal transport and contributed to metal endowment. We investigated the transport of gold (Au) in model oil compounds (S-free n-dodecane, CH3(CH2)10CH3, DD; and S-bearing 1-dodecanethiol, CH3(CH2)10CH2SH; DDT) from 25 °C to 250 °C using in-situ synchrotron X-ray absorption spectroscopy (XAS) experiments to determine the speciation and the structural properties of gold complexes in the aqueous- and oil-based fluids. For most experiments, DD or DDT were in contact with Au-bearing acidified water, or acidified water plus 10 wt% NaCl (pH25˚C=1.85 in both cases). Gold rapidly partitioned from the aqueous phase into DD and DDT. Below 125 °C, Au(III)Cl is dominant in the DD and the adjacent water with a refined coordination number (CN) of chloride of 4.0(3) and an Au-Cl bond length of 2.28 Å, consistent with the tetrachloroaurate complex (AuCl4-) being stable in both the aqueous and organic phases. In contrast, Au(III) is rapidly reduced in the presence of DDT and an Au(I) complex dominates in both water and adjacent DDT with a CN of sulfur ~2.0, suggesting a [RS-Au-SR]- (RS = DDT with deprotonated thiol group) complex with Au-S bond lengths ranging from 2.29(1) Å to 2.31(3) Å. In an open system of DDT in contact with water, of which the water and DDT were analyzed separately, AuCl4- was dominant in the water phase, and Au(RS)2- dominant in DDT, possibly due to different equilibration kinetics in the beaker and glassy carbon tube. Since sulfur and organothiol compounds are ubiquitous and abundant components in natural oils, this study demonstrates the potential of natural oils to scavenge and enrich gold from co-existing gold-bearing brines. In particular, Au(I) organothiol complexes may contribute to transport in low-temperature (<125 °C) ore fluids such as those in basinal environments – in both hydrothermal fluids and oils. At temperatures ≥ 125 °C, gold was reduced to metallic gold in all experiments, suggesting that organo-stabilized nanoparticles may be the major form of gold to be scavenged, concentrated or transported in crude oils at these conditions. The results imply that brine-oil interactions may enrich Au in oils, and that oils may be an effective ore fluid in sedimentary environments such as Carlin type deposits.

Topics
  • nanoparticle
  • impedance spectroscopy
  • compound
  • Carbon
  • phase
  • experiment
  • gold
  • x-ray absorption spectroscopy