Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Limei

  • Google
  • 3
  • 27
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Discovering an unknown territory using atom probe tomography8citations
  • 2017Crystallography of refractory metal nuggets in carbonaceous chondrites9citations
  • 2017Crystallography of refractory metal nuggets in carbonaceous chondrites: a transmission Kikuchi diffraction approach9citations

Places of action

Chart of shared publication
Entezari, Ali
1 / 4 shared
Guagliardo, Paul
1 / 3 shared
Cairney, Julie M.
1 / 5 shared
Roohani, Iman
1 / 5 shared
Holmes, Natalie P.
1 / 5 shared
Lu, Zufu
1 / 5 shared
Zreiqat, Hala
1 / 16 shared
Chen, Yi Sheng
1 / 1 shared
Dunstan, Colin R.
1 / 6 shared
Piazolo, Sandra
2 / 10 shared
Trimby, Patrick W.
1 / 1 shared
Saxey, David W.
1 / 3 shared
Moody, Steve
2 / 2 shared
Reddy, Steven M.
2 / 5 shared
Dyl, Kathryn A.
2 / 2 shared
Daly, Luke
2 / 4 shared
Ringer, Simon P.
1 / 4 shared
Forman, Lucy V.
1 / 1 shared
Rickard, William D. A.
2 / 7 shared
Bland, Phil A.
2 / 2 shared
Liu, Hongwei
2 / 4 shared
Saunders, Martin
2 / 33 shared
Trimby, Pw
1 / 1 shared
Forman, Lv
1 / 1 shared
Saxey, Dw
1 / 1 shared
Fougerouse, Denis
1 / 2 shared
Ringer, Sp
1 / 11 shared
Chart of publication period
2023
2017

Co-Authors (by relevance)

  • Entezari, Ali
  • Guagliardo, Paul
  • Cairney, Julie M.
  • Roohani, Iman
  • Holmes, Natalie P.
  • Lu, Zufu
  • Zreiqat, Hala
  • Chen, Yi Sheng
  • Dunstan, Colin R.
  • Piazolo, Sandra
  • Trimby, Patrick W.
  • Saxey, David W.
  • Moody, Steve
  • Reddy, Steven M.
  • Dyl, Kathryn A.
  • Daly, Luke
  • Ringer, Simon P.
  • Forman, Lucy V.
  • Rickard, William D. A.
  • Bland, Phil A.
  • Liu, Hongwei
  • Saunders, Martin
  • Trimby, Pw
  • Forman, Lv
  • Saxey, Dw
  • Fougerouse, Denis
  • Ringer, Sp
OrganizationsLocationPeople

article

Crystallography of refractory metal nuggets in carbonaceous chondrites

  • Yang, Limei
  • Piazolo, Sandra
  • Trimby, Patrick W.
  • Saxey, David W.
  • Moody, Steve
  • Reddy, Steven M.
  • Dyl, Kathryn A.
  • Daly, Luke
  • Ringer, Simon P.
  • Forman, Lucy V.
  • Rickard, William D. A.
  • Bland, Phil A.
  • Liu, Hongwei
  • Saunders, Martin
Abstract

<p>Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5–10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this alteration, RMNs still preserve primary crystallographic textures and heterogeneous chemical signatures. This heterogeneity in crystallographic relationships, which mostly suggest that RMNs pre-date their host, is consistent with the idea that there is not a dominant RMN forming process. Each RMN has experienced a complex history, supporting the suggestion of Daly et al. (2017), that RMNs may preserve a diverse pre-solar chemical signature inherited from the Giant Molecular Cloud.</p>

Topics
  • impedance spectroscopy
  • inclusion
  • phase
  • scanning electron microscopy
  • transmission electron microscopy
  • texture
  • forming
  • annealing
  • electron backscatter diffraction
  • refractory
  • lamellae