People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdelmoula, Mustapha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic propertiescitations
- 2019Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic propertiescitations
- 2019Structure of single sheet iron oxides produced from surfactant interlayered green rustscitations
- 2018Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteriacitations
- 2017Shale Of The Ivory Coast As A Filtration Material For Phosphate Removal From Waste Water
- 2017Biogenic Mineral Precipitation during Antimony bearing Ferrihydrite bioreduction
- 2012Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contaminationcitations
- 2010In situ oxidation of green rusts by deprotonation; wet corrosion and passivation of weathering steelscitations
- 2009Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefacienscitations
- 2009Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefacienscitations
- 2008Aluminium substitution in iron(II–III)-layered double hydroxides: Formation and cationic ordercitations
- 2008Comparative studies of ferric green rust and ferrihydrite coated sand: Role of synthesis routescitations
Places of action
Organizations | Location | People |
---|
article
Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens
Abstract
X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission elec- tron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X- ray powder diffraction, and Mo ̈ ssbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (c-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [FeII4FeIII2(OH)12CO3: GR1(CO3)], which completely converted into ferrous-car- bonate hydroxide (FeII2(OH)2CO3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occur- rence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)2 nanoparticles as oligomers binding to the edges of Fe(OH)6 octahedra at the edges of the octahedral layers of Fe(OH)2. These multinuclear As(III) surface complexes are characterized by As–As pairs at a distance of 3.32 ± 0.02 A ̊ and by As–Fe pairs at a distance of 3.50 ± 0.02 A ̊ and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids,