People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mummery, Pm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Delayed surface degradation in W-Ta alloys at 400°C under high-fluence 40 eV He plasma exposurecitations
- 2021High-dose ion irradiation damage in Fe28Ni28Mn26Cr18 characterised by TEM and depth-sensing nanoindentationcitations
- 2019Analysis of dynamic fracture and fragmentation of graphite bricks by combined XFEM and cohesive zone approachcitations
- 2019Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni Systemcitations
- 20173D dynamic fracture and fragmentation of AGR Graphite brick slices using XCZM
- 2017Short-Range Order in High Entropy Alloyscitations
- 2017Dynamic fracture analysis by explicit solid dynamics and implicit crack propagationcitations
- 2017Crack healing behaviour of Cr2AlC MAX phase studied by X-ray tomographycitations
- 2017The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloycitations
- 2017Micro X-ray Computed Tomography Image-based Two-scale Homogenisation of Ultra High Performance Fibre Reinforced Concretecitations
- 2016Fracture strength testing of a self-passivating tungsten alloy at the micrometre scalecitations
- 2016Investigating the effects of stress on the pore structures of nuclear grade graphitescitations
- 2016In situ observation of mechanical damage within a SiC-SiC ceramic matrix compositecitations
- 2013Observation and quantification of three-dimensional crack propagation in poly-granular graphitecitations
- 2012Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of mouldscitations
- 2009A finite element approach to the biomechanics of dromaeosaurid dinosaur claws
- 2008Investigating predictive capabilities of image-based modeling for woven composites in a scalable computing environment
- 2008Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimenscitations
- 2008Nanoindentation of histological specimens using an extension of the Oliver and Pharr methodcitations
- 2005Full-field strain mapping by optical correlation of micrographs acquired during deformationcitations
Places of action
Organizations | Location | People |
---|
article
Delayed surface degradation in W-Ta alloys at 400°C under high-fluence 40 eV He plasma exposure
Abstract
The surface modifications in W-xTa alloys (x = 0, 6, 11 wt.%), as potential material candidates for tokamak components facing the fusion plasma, have been assessed at a temperature of ~400 °C, by exposing the material surface to 40 eV He for increasing He fluences up to 10^27m-2 and flux of ~10^23 m-2 s-1. Surface wave-like structures appear in all samples at a fluence of 10^26 m-2, whereas at the higher fluence of 10^27m-2 the material’s surface is characterised by the presence of blisters and ablations. This suggests a new critical fluence for blistering in pure He plasma to be between 10^26-10^27 m-2. There is also a near-surface layer with a thickness of ~200 nm that contains He bubbles of 2.20-2.70 nm in average size. Increasing Ta content leads to a small reduction in bubble size, and to clear reductions in the presence of blisters and ablations. Ta alloying can improve the hardness and yield strength and reduce the He diffusivity in the material. This therefore delays bubble formation and surface blistering and ablations that are affected by these mechanical properties. This was exemplified at the highest fluence by a large mitigation of surface material ablation.