Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ishii, Masaomi

  • Google
  • 2
  • 5
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Metallurgical study on corrosion of RAFM steel JLF-1 in Pb-Li alloys with various Li concentrations21citations
  • 2015Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)38citations

Places of action

Chart of shared publication
Kondo, Masatoshi
2 / 25 shared
Tanaka, Teruya
1 / 4 shared
Hishinuma, Yoshimitsu
1 / 2 shared
Muroga, Takeo
2 / 16 shared
Nozawa, Takashi
1 / 3 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Kondo, Masatoshi
  • Tanaka, Teruya
  • Hishinuma, Yoshimitsu
  • Muroga, Takeo
  • Nozawa, Takashi
OrganizationsLocationPeople

article

Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

  • Kondo, Masatoshi
  • Ishii, Masaomi
  • Muroga, Takeo
Abstract

The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe3Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed in liquid Sn and Sn–20Li was much slower than that in liquid Ga. The weight change of the JLF-1 specimen immersed in Sn–20Li for 750 h was measured after the removal of the adherent Sn–20Li in a Li pool. The weight loss was 1.42 × 103 g/m3, and this value was 1500 times larger than that tested in liquid lead lithium alloy (Pb–17Li) at the same conditions in the previous studies.

Topics
  • corrosion
  • melt
  • steel
  • Lithium
  • activation
  • tin
  • phase diagram
  • Gallium